Patents by Inventor Spencer Greene

Spencer Greene has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240095259
    Abstract: Systems and methods are provided for storing a first data object comprising a first set of immutable components, the first data object being associated with a corresponding second data object stored by a remote replication system. A difference is determined between the first set of immutable components of the first data object and a second set of immutable components of the corresponding second data object. A subset of immutable components is identified from the first set of immutable components based on the difference. The subset of immutable components from the first set of immutable components is provided to the remote replication system over a communication network.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Inventors: Stephen Freiberg, Alexander Landau, Andrew Greene, Brian Dorne, Bryan Offutt, Ernest Zeidman, Ilya Nepomnyaschchiy, John Garrod, Katherine Brainard, Kolin Purcell, Michael Levin, Simon Swanson, Spencer Stecko
  • Patent number: 11821988
    Abstract: Ladar System with Intelligent Selection of Shot Patterns Based on Field of View Data A ladar transmitter that transmits ladar pulses toward a plurality of range points in a field of view can be controlled to target range points based on any of a plurality of defined shot patterns. Each defined shot pattern can be instantiated to identify various coordinates in the field of view that are to be targeted by a ladar pulses. A processor can process data about the field of view such as range data and/or camera data to make selections as to which of the defined shot patterns should be selected over time.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: November 21, 2023
    Assignee: AEYE, Inc.
    Inventors: Luis Carlos Dussan, Allan Steinhardt, Joel David Benscoter, Jordan Spencer Greene
  • Patent number: 11513223
    Abstract: A ladar system and related method are disclosed where the system includes a ladar transmitter and a ladar receiver. The ladar transmitter transmits ladar pulses into a field of view, and the ladar receiver receives ladar pulse returns from objects in the field of view. The ladar receiver comprises a cross-receiver, the cross-receiver comprising a first 1D array of photodetector cells and a second 1D array of photodetector cells that are oriented differently relative to each other.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: November 29, 2022
    Assignee: AEYE, Inc.
    Inventors: Luis Carlos Dussan, Allan Steinhardt, Jordan Spencer Greene, Allen Chi-Luen Wang, Nitin Vyas, Daryoosh Rejaly
  • Publication number: 20220075067
    Abstract: A ladar transmitter that transmits ladar pulses toward a plurality of range points in a field of view can be controlled to target range points based on any of a plurality of defined shot patterns. Each defined shot pattern can be instantiated to identify various coordinates in the field of view that are to be targeted by a ladar pulses. A processor can process data about the field of view such as range data and/or camera data to make selections as to which of the defined shot patterns should be selected over time.
    Type: Application
    Filed: May 10, 2021
    Publication date: March 10, 2022
    Inventors: Luis Carlos Dussan, Allan Steinhardt, Joel David Benscoter, Jordan Spencer Greene
  • Patent number: 11002857
    Abstract: A ladar transmitter that transmits ladar pulses toward a plurality of range points in a field of view can be controlled to target range points based on any of a plurality of defined shot list frames. Each defined shot list frame can identify various coordinates in the field of view that are to be targeted by a ladar pulses for a given ladar frame. A processor can process data about the field of view such as range data and/or camera data to make selections as to which of the defined shot list frames should be selected for a given frame of ladar data.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: May 11, 2021
    Assignee: AEYE, INC.
    Inventors: Luis Carlos Dussan, Allan Steinhardt, Joel David Benscoter, Jordan Spencer Greene
  • Patent number: 10921450
    Abstract: A ladar system and related method are disclosed where a ladar transmitter transmits ladar pulses toward a plurality of range points, and a ladar receiver receives ladar returns from the range points, wherein the ladar receiver comprises a photo receiver. A sensor can be used to sense background light levels, and a control circuit can (1) measures the sensed background light levels and (2) provide frequency domain shuttering with respect to the photo receiver based on the measured background light levels.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: February 16, 2021
    Assignee: AEYE, INC.
    Inventors: Luis Carlos Dussan, Allan Steinhardt, Jordan Spencer Greene, Allen Chi-Luen Wang, Nitin Vyas, Daryoosh Rejaly
  • Publication number: 20200341146
    Abstract: A ladar system and related method are disclosed where a ladar transmitter transmits ladar pulses toward a plurality of range points, and a ladar receiver receives ladar returns from the range points, wherein the ladar receiver comprises a photo receiver.
    Type: Application
    Filed: May 9, 2019
    Publication date: October 29, 2020
    Inventors: Luis Carlos Dussan, Allan Steinhardt, Jordan Spencer Greene, Allen Chi-Luen Wang, Nitin Vyas, Daryoosh Rejaly
  • Publication number: 20200341147
    Abstract: A ladar system and related method are disclosed where the system includes a ladar transmitter and a ladar receiver. The ladar transmitter transmits ladar pulses into a field of view, and the ladar receiver receives ladar pulse returns from objects in the field of view. The ladar receiver comprises a cross-receiver, the cross-receiver comprising a first 1D array of photodetector cells and a second 1D array of photodetector cells that are oriented differently relative to each other.
    Type: Application
    Filed: May 9, 2019
    Publication date: October 29, 2020
    Inventors: Luis Carlos Dussan, Allan Steinhardt, Jordan Spencer Greene, Allen Chi-Luen Wang, Nitin Vyas, Daryoosh Rejaly
  • Patent number: 10663596
    Abstract: Disclosed herein is a ladar system that includes a ladar transmitter, ladar receiver, and camera, where the camera that is co-bore sited with the ladar receiver, the camera configured to generate image data corresponding to a field of view for the ladar receiver. In an example embodiment, a mirror can be included in the optical path between a lens and photodetector in the ladar receiver, where the mirror (1) directs light within the light from the lens that corresponds to a first light spectrum in a first direction for reception by the camera and (2) directs light within the light from the lens that corresponds to a second light spectrum in a second direction for reception by the photodetector, wherein the second light spectrum includes ladar pulse reflections for processing by the ladar system.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: May 26, 2020
    Assignee: AEYE, INC.
    Inventors: Luis Carlos Dussan, Allan Steinhardt, Joel David Benscoter, Jordan Spencer Greene
  • Patent number: 10656272
    Abstract: A ladar system and related method are disclosed where the ladar system comprises first and second receivers. The first receiver receives a ladar return from a ladar pulse with a known transmit polarization. The second receiver receives the ladar return from the ladar pulse with the known transmit polarization. The ladar system also includes a control circuit that (1) measures incident polarizations at the first and second receivers with respect to the received ladar return and (2) separates a retro-reflective portion of the received ladar return from a non-retro-reflective portion of the received ladar return based on the measured incident polarization and the known transmit polarization.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: May 19, 2020
    Assignee: AEYE, INC.
    Inventors: Luis Carlos Dussan, Allan Steinhardt, Jordan Spencer Greene, Allen Chi-Luen Wang, Nitin Vyas, Daryoosh Rejaly
  • Patent number: 10641900
    Abstract: A ladar system can estimate intra-frame motion for an object within a field of view of the ladar system using a tight cluster of ladar pulses. For example, ladar pulses in a cluster can be spaced apart but overlapping with at least one of the other ladar pulses in that cluster at a specified distance in the field of view. A ladar receiver can then process the reflections from the cluster to computer intra-frame motion data, such as intra-frame velocity and intra-frame acceleration for an object.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: May 5, 2020
    Assignee: AEYE, INC.
    Inventors: Luis Carlos Dussan, Allan Steinhardt, Joel David Benscoter, Jordan Spencer Greene
  • Patent number: 10641897
    Abstract: A ladar system and related method are disclosed where the ladar system includes a sensor that senses background light levels. A control circuit of the ladar system (1) measures the sensed background light levels and (2) controllably adjusts a pulse duration for a new ladar pulse based on the measured background light levels. A ladar transmitter can then transmit the new ladar pulse, wherein the new ladar pulse has the adjusted pulse duration. In an example embodiment, this technique for adaptive pulse duration can be employed in the ladar system where the ladar transmitter and ladar receiver are arranged in a bistatic architecture.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: May 5, 2020
    Assignee: AEYE, INC.
    Inventors: Luis Carlos Dussan, Allan Steinhardt, Jordan Spencer Greene, Allen Chi-Luen Wang, Nitin Vyas, Daryoosh Rejaly
  • Publication number: 20200025886
    Abstract: Disclosed herein is a ladar system that includes a ladar transmitter, ladar receiver, and camera, where the camera that is co-bore sited with the ladar receiver, the camera configured to generate image data corresponding to a field of view for the ladar receiver. In an example embodiment, a mirror can be included in the optical path between a lens and photodetector in the ladar receiver, where the mirror (1) directs light within the light from the lens that corresponds to a first light spectrum in a first direction for reception by the camera and (2) directs light within the light from the lens that corresponds to a second light spectrum in a second direction for reception by the photodetector, wherein the second light spectrum includes ladar pulse reflections for processing by the ladar system.
    Type: Application
    Filed: August 21, 2018
    Publication date: January 23, 2020
    Inventors: Luis Carlos Dussan, Allan Steinhardt, Joel David Benscoter, Jordan Spencer Greene
  • Publication number: 20200025887
    Abstract: A ladar transmitter that transmits ladar pulses toward a plurality of range points in a field of view can be controlled to target range points based on any of a plurality of defined shot list frames. Each defined shot list frame can identify various coordinates in the field of view that are to be targeted by a ladar pulses for a given ladar frame. A processor can process data about the field of view such as range data and/or camera data to make selections as to which of the defined shot list frames should be selected for a given frame of ladar data.
    Type: Application
    Filed: August 21, 2018
    Publication date: January 23, 2020
    Inventors: Luis Carlos Dussan, Allan Steinhardt, Joel David Benscoter, Jordan Spencer Greene
  • Patent number: 10495757
    Abstract: Systems and methods are disclosed for vehicle motion planning where a sensor, such as a ladar system, is used to detect threatening or anomalous conditions within the sensor's field of view so that priority warning data about such conditions can be inserted at low latency into the motion planning loop of a motion planning computer system for the vehicle. The ladar system can perform compressive sensing to target the field of view with a plurality of ladar pulses.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: December 3, 2019
    Assignee: AEYE, INC.
    Inventors: Luis Carlos Dussan, Allan Steinhardt, Joel David Benscoter, Jordan Spencer Greene
  • Publication number: 20190086514
    Abstract: A ladar system can estimate intra-frame motion for an object within a field of view of the ladar system using a tight cluster of ladar pulses. For example, ladar pulses in a cluster can be spaced apart but overlapping with at least one of the other ladar pulses in that cluster at a specified distance in the field of view. A ladar receiver can then process the reflections from the cluster to computer intra-frame motion data, such as intra-frame velocity and intra-frame acceleration for an object.
    Type: Application
    Filed: August 21, 2018
    Publication date: March 21, 2019
    Inventors: Luis Carlos Dussan, Allan Steinhardt, Joel David Benscoter, Jordan Spencer Greene
  • Publication number: 20190086550
    Abstract: Systems and methods are disclosed for vehicle motion planning where a sensor, such as a ladar system, is used to detect threatening or anomalous conditions within the sensor's field of view so that priority warning data about such conditions can be inserted at low latency into the motion planning loop of a motion planning computer system for the vehicle. The ladar system can perform compressive sensing to target the field of view with a plurality of ladar pulses.
    Type: Application
    Filed: August 21, 2018
    Publication date: March 21, 2019
    Inventors: Luis Carlos Dussan, Allan Steinhardt, Joel David Benscoter, Jordan Spencer Greene
  • Patent number: 8521870
    Abstract: A system measures traffic in a device. The system tracks an amount of data and the data units and predicts the amount of padding associated with the data units. The system determines the amount of traffic in the device based on the predicted padding, the amount of data, and the number of data units.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: August 27, 2013
    Assignee: Juniper Networks, Inc.
    Inventor: Spencer Greene
  • Patent number: 8331359
    Abstract: A network device includes one or more processing units and an external memory. Each of the one or more processing units includes a centralized counter configured to perform accounting for the respective processing unit. The external memory is associated with at least one of the one or more processing units and is configured to store a group of count values for the at least one processing unit.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: December 11, 2012
    Assignee: Juniper Networks, Inc.
    Inventors: Albert Weichung Kuo, Reuven Meyer Samuel, Debashis Basu, Arunachalam Vaidyanathan, Spencer Greene
  • Patent number: 8254408
    Abstract: A system includes a gateway node that contains modular cards that separately implement control and data planes of a network protocol. The separate data and control cards provide for improved system reliability and improved flexibility in managing bandwidth. Control or data cards can be added to the gateway node as needed based on system load.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: August 28, 2012
    Assignee: Juniper Networks, Inc.
    Inventors: Arthur Stine, Paul S. Traina, Spencer Greene