Patents by Inventor Spencer Jackman

Spencer Jackman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9039918
    Abstract: Lithium-ion-conducting ceramic materials are disclosed having characteristics of high lithium-ion conductivity at low temperatures, good current efficiency, and stability in water and corrosive media under static and electrochemical conditions. Some general formulas for the lithium-ion-conducting materials include MI1+x+z??MIIIxMIVayMIVb2?x?yMVzP3?zO12 and MI1+x+4z??MIIIxMIVayMIVb2?x?y?zP3O12, wherein MI comprises Li, Na, or mixtures thereof; 0.05<x<0.5, 0.05<y<2, 0?z<3, and 0??<0.5; MIII comprises Al, Hf, Sc, Y, La, or mixtures thereof; MIVa comprises Zr, Ge, Sn, or mixtures thereof; MIVb comprises Ti; and MV comprises Si, Ge, Sn, or mixtures thereof. In some cases, the lithium-ion conducting materials are formed through a process in which the materials' powdered precursors are milled after being calcined and before being sintered. The milling process may include using milling media of multiple sizes.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: May 26, 2015
    Assignee: CERAMATEC, INC.
    Inventors: Shekar Balagopal, Roger Marc Flinders, Spencer Jackman
  • Publication number: 20140197351
    Abstract: Lithium-ion-conducting ceramic materials are disclosed having characteristics of high lithium-ion conductivity at low temperatures, good current efficiency, and stability in water and corrosive media under static and electrochemical conditions. Some general formulas for the lithium-ion-conducting materials include MI1+x+z-?MIIIxMIVayMIVb2-x-yMVzP3-zO12 and MI1+x+4z-?MIIIxMIVayMIVb2-x-y-zP3O12, wherein MI comprises Li, Na, or mixtures thereof; 0.05<x<0.5, 0.05<y<2, 0?z<3, and 0??<0.5; MIII comprises Al, Hf, Sc, Y, La, or mixtures thereof; MIVa comprises Zr, Ge, Sn, or mixtures thereof; MIVb comprises Ti; and MV comprises Si, Ge, Sn, or mixtures thereof. In some cases, the lithium-ion conducting materials are formed through a process in which the materials' powdered precursors are milled after being calcined and before being sintered. The milling process may include using milling media of multiple sizes.
    Type: Application
    Filed: January 16, 2013
    Publication date: July 17, 2014
    Inventors: Shekar Balagopal, Roeger Marc Flinders, Spencer Jackman