Patents by Inventor Sreekanth Menon

Sreekanth Menon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12190491
    Abstract: A method and system for dimension estimation based on duplication identification is disclosed. In some embodiments, the method includes receiving a set of images of an object. The method includes detecting, from each image in the set of images, a respective image segmentation representing a damage of the object. The method then includes determining a respective dimension for the damage represented by each of the image segmentations. The method further includes determining whether two or more of the image segmentations represent a same damage of the object. Responsive to two or more of the image segmentations representing a same damage of the object, the method includes combining the respective dimensions determined for the damage represented by the two or more image segmentations to obtain a final dimension for the same damage.
    Type: Grant
    Filed: November 29, 2023
    Date of Patent: January 7, 2025
    Assignee: Genpact USA, Inc.
    Inventors: Abhilash Nvs, Ankit Sati, Payanshi Jain, Koundinya K. Nvss, Rajat Katiyar, Mohiuddin Khan, Chirag Jain, Sreekanth Menon
  • Publication number: 20240428204
    Abstract: A method and system are provided for assessing damage to a structure. According to one embodiment, the method includes detecting one or more external parts of the structure from a video of the structure using a first machine learning (ML) module trained to identify in one or more frames of a video of a structure an external part of the structure. The method also includes using a second ML module, trained to detect and classify damaged regions of a structure from one or more frames of the video: (i) identifying one or more damaged regions of the structure, and (ii) classifying the one or more damaged regions based on damage types. The method further includes associating the one or more damaged regions and corresponding damage types with the one or more external parts, providing a respective vision-based damage estimate for each of the one or more external parts.
    Type: Application
    Filed: June 11, 2024
    Publication date: December 26, 2024
    Inventors: Abhilash Nvs, Adrita Barari, Ankit Sati, Payanshi Jain, Chirag Jain, Sreekanth Menon
  • Publication number: 20240371380
    Abstract: A method and system for processing an audio stream include receiving an audio stream by a node, splitting the audio stream into segments using a producer-consumer algorithm in the memory of the node, where the audio stream is split into the segments based on silence detection, transcribing voice included in a segment into text using a voice-to-text conversion engine, and performing natural language processing on the text to identify situational insights from the segment.
    Type: Application
    Filed: May 1, 2023
    Publication date: November 7, 2024
    Applicant: Genpact Luxembourg S.à r.l. II
    Inventors: Rahul Saha, Siddharth Singh, Jatindra Singh Deo, Rajat Srivastava, Gope Biswas, Sreekanth Menon
  • Patent number: 12039501
    Abstract: A method and system are provided for assessing damage to a structure. According to one embodiment, the method includes detecting one or more external parts of the structure from a video of the structure using a first machine learning (ML) module trained to identify in one or more frames of a video of a structure an external part of the structure. The method also includes using a second ML module, trained to detect and classify damaged regions of a structure from one or more frames of the video: (i) identifying one or more damaged regions of the structure, and (ii) classifying the one or more damaged regions based on damage types. The method further includes associating the one or more damaged regions and corresponding damage types with the one or more external parts, providing a respective vision-based damage estimate for each of the one or more external parts.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: July 16, 2024
    Assignee: Genpact USA, Inc.
    Inventors: Abhilash Nvs, Adrita Barari, Ankit Sati, Payanshi Jain, Chirag Jain, Sreekanth Menon
  • Publication number: 20240193469
    Abstract: The disclosure relates to a method for receiving labelled data from data sources; generating a plurality of segments from the labelled data using tokenizers, wherein each of the segments is associated with one or more classes, and wherein the plurality of segments comprises a sub-plurality of unique segments; calculating an entropy value for each of the sub-plurality of unique segments; for each class, generating one or more rules based on each of the segments associated with the class and the entropy value of each such segment; and combining the generated one or more rules with a model to improve prediction performance of the model. The labelled data is input data for a classifier model to form predictions and false positives are extracted from the predictions. The model explainability techniques and the false positives are used to create additional rule.
    Type: Application
    Filed: December 8, 2022
    Publication date: June 13, 2024
    Inventors: Hitesh Para, Meenakshi Sundaram Murugeshan, Sreekanth Menon, Prakash Selvakumar
  • Publication number: 20240176950
    Abstract: A method for aspect-based sentiment analysis includes receiving a collection of textual data, extracting a set of aspects and a set of sentiment words from the textual data, identifying a set of aspect-sentiment word pairs from the extracted aspects and sentiment words, identifying a subset of aspect-sentiment word pairs according to a set of predefined rules, and grouping a plurality of aspects associated with the subset of aspect-sentiment word pairs into one or more clusters. Each of the set of aspect-sentiment word pairs includes an aspect word from the set of aspects and a sentiment word from the set of sentiment words. Each of the subset of aspect-sentiment word pairs is determined to have an aspect-sentiment relationship according to the set of predefined rules.
    Type: Application
    Filed: November 28, 2022
    Publication date: May 30, 2024
    Inventors: Varsha Rani, Prakash Selvakumar, Sreekanth Menon
  • Publication number: 20240095896
    Abstract: A method and system for dimension estimation based on duplication identification is disclosed. In some embodiments, the method includes receiving a set of images of an object. The method includes detecting, from each image in the set of images, a respective image segmentation representing a damage of the object. The method then includes determining a respective dimension for the damage represented by each of the image segmentations. The method further includes determining whether two or more of the image segmentations represent a same damage of the object. Responsive to two or more of the image segmentations representing a same damage of the object, the method includes combining the respective dimensions determined for the damage represented by the two or more image segmentations to obtain a final dimension for the same damage.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 21, 2024
    Inventors: Abhilash Nvs, Ankit Sati, Payanshi Jain, Koundinya K. Nvss, Rajat Katiyar, Mohiuddin Khan, Chirag Jain, Sreekanth Menon
  • Patent number: 11886820
    Abstract: A method and system are provided for training a machine-learning (ML) system/module and to provide an ML model. In one embodiment, a method includes using a labeled entities set to train a machine learning (ML) system, to obtain an ML model, and using the trained ML model to predict labels for entities in an unlabeled entities set, yielding a machine-labeled entities set. One or more individual ML models may be trained and used in this way, where each individual ML model corresponds to a respective document source. The document sources can be identified via classification of a corpus of documents. The prediction of labels provides a respective confidence score for each machine-labeled entity. The method also includes selecting from the machine-labeled entities set, a subset of machine-labeled entities having a respective confidence score at least equal to a threshold confidence score; and updating the labeled entities set by adding thereto the selected subset of machine-labeled entities.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: January 30, 2024
    Assignee: Genpact Luxembourg S.à r.l. II
    Inventors: Sreekanth Menon, Prakash Selvakumar, Sudheesh Sudevan
  • Patent number: 11875496
    Abstract: A method for dimension estimation based on duplication identification. In some embodiments, the method includes receiving a set of images of an object. The method then includes detecting, using a first machine learning system trained to perform image segmentation, a first image segmentation representing a damage of the object on a first image and a second image segmentation representing a damage of the object on a second image. The method further includes determining, using a second machine learning system trained to perform dimension estimation, a first dimension for the damage represented by the first image segmentation and a second dimension for the damage represented by the second image segmentation. The method includes determining whether the first and second image segmentations represent a same damage. If these image segmentations represent the same damage, the method intelligently combines the first and second dimensions to obtain a final dimension for the damage.
    Type: Grant
    Filed: August 25, 2021
    Date of Patent: January 16, 2024
    Assignee: Genpact Luxembourg S.à r.l. II
    Inventors: Abhilash Nvs, Ankit Sati, Payanshi Jain, Koundinya K. Nvss, Rajat Katiyar, Mohiuddin Khan, Chirag Jain, Sreekanth Menon
  • Patent number: 11855934
    Abstract: A method and system for generating and correcting chatbot responses based on reinforcement learning (RL) are disclosed. In some embodiments, the method includes receiving user data associated with a user in a chatbot conversation. The method includes providing a first recommendation to the user. The method includes detecting user feedback to the first recommendation in the chatbot conversation. The method then includes determining whether to assign a positive reward or a negative reward to the user feedback based on sentiment analysis performed on the user feedback. If the negative reward is assigned to the user feedback, the method further includes calculating a negative reward score for the first recommendation; retraining the one or more of RL models using one or more of the negative reward score, the user data, the first recommendation, and the user feedback; and determining a second recommendation using the one or more retrained RL models.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: December 26, 2023
    Assignee: Genpact Luxembourg S.à r.l. II
    Inventors: Sreekanth Menon, Prakash Selvakumar, Varsha Rani
  • Publication number: 20230316302
    Abstract: A method and system for time series forecasting on a big data set are provided. The method includes receiving a plurality of time series, each of the time series representing a historical demand pattern for an item, performing a domain-based segmentation to identify a plurality of statistically forecastable time series from the plurality of time series, grouping the plurality of statistically forecastable time series into one or more clusters, for each cluster, generating an aggregate time series based on time series included in the cluster, performing a future demand forecast at a cluster level by performing time series forecasting of the aggregate time series for each cluster, and determining a future demand forecast for each item based on the time series forecasting of the aggregate time series.
    Type: Application
    Filed: March 30, 2022
    Publication date: October 5, 2023
    Inventors: Rajat Katiyar, Naman Mishra, Mohit Makkar, Omprakash Ranakoti, Sreekanth Menon
  • Publication number: 20230297956
    Abstract: A method and system for detecting deviation between invoices and receipts are disclosed. In some embodiments, the method includes receiving invoice data and receipt data. The method includes filtering the received data to generate filtered data. The method includes performing line-level matching on the filtered data based on one or more line-level attributes and one or more distance based algorithms. The method then includes determining, from the line-level matching, matched line items and unmatched line items between each pair of the invoice and receipts. The method also includes calculating one or more types of claims for both the matched line items and the unmatched line items to measure a total deviation between the invoices and receipts. The method further includes determining a level of match between the invoices and receipts and generating a recommended matching pair of invoice and receipt based on the level of match.
    Type: Application
    Filed: March 21, 2022
    Publication date: September 21, 2023
    Inventors: Niloo Kumari, Sayantan Banerjee, Anirudh Sharma, Ravi Kumar, David I. Hauser, Sreekanth Menon, Bhavani Eshwar, Bindu Manoj, Nikhil Deshpande, Anurag Thakor, Amit Kapur
  • Publication number: 20230281387
    Abstract: A method and system for handling unlabeled interaction data with contextual understanding are disclosed. In some embodiments, the method includes receiving the interaction data describing agent-consumer interactions associated with a contact center. The method includes analyzing the interaction data to identify a plurality of features. The method includes automatically performing taxonomy driven classification on the plurality of features to generate a first set of labels associated with the interaction data. The method includes training a deep learning model using the first set of labels and the interaction data to determine a second set of labels. The method then includes intelligently combining the first and second sets of labels to obtain a combined set of labels associated with the interaction data.
    Type: Application
    Filed: March 2, 2022
    Publication date: September 7, 2023
    Inventors: Prakash Selvakumar, Meenakshi Sundaram Murugeshan, Payanshi Jain, Gehna Ahuja, Sai Krishna Reddy, Chirag Jain, Sreekanth Menon
  • Publication number: 20230188480
    Abstract: A method and system for generating and correcting chatbot responses based on reinforcement learning (RL) are disclosed. In some embodiments, the method includes receiving user data associated with a user in a chatbot conversation. The method includes providing a first recommendation to the user. The method includes detecting user feedback to the first recommendation in the chatbot conversation. The method then includes determining whether to assign a positive reward or a negative reward to the user feedback based on sentiment analysis performed on the user feedback. If the negative reward is assigned to the user feedback, the method further includes calculating a negative reward score for the first recommendation; retraining the one or more of RL models using one or more of the negative reward score, the user data, the first recommendation, and the user feedback; and determining a second recommendation using the one or more retrained RL models.
    Type: Application
    Filed: December 9, 2021
    Publication date: June 15, 2023
    Inventors: Sreekanth Menon, Prakash Selvakumar, Varsha Rani
  • Publication number: 20230063002
    Abstract: A method for dimension estimation based on duplication identification. In some embodiments, the method includes receiving a set of images of an object. The method then includes detecting, using a first machine learning system trained to perform image segmentation, a first image segmentation representing a damage of the object on a first image and a second image segmentation representing a damage of the object on a second image. The method further includes determining, using a second machine learning system trained to perform dimension estimation, a first dimension for the damage represented by the first image segmentation and a second dimension for the damage represented by the second image segmentation. The method includes determining whether the first and second image segmentations represent a same damage. If these image segmentations represent the same damage, the method intelligently combines the first and second dimensions to obtain a final dimension for the damage.
    Type: Application
    Filed: August 25, 2021
    Publication date: March 2, 2023
    Inventors: Abhilash Nvs, Ankit Sati, Payanshi Jain, Koundinya K. Nvss, Rajat Katiyar, Mohiuddin Khan, Chirag Jain, Sreekanth Menon
  • Publication number: 20220129860
    Abstract: A method and system are provided for assessing damage to a structure. According to one embodiment, the method includes detecting one or more external parts of the structure from a video of the structure using a first machine learning (ML) module trained to identify in one or more frames of a video of a structure an external part of the structure. The method also includes using a second ML module, trained to detect and classify damaged regions of a structure from one or more frames of the video: (i) identifying one or more damaged regions of the structure, and (ii) classifying the one or more damaged regions based on damage types. The method further includes associating the one or more damaged regions and corresponding damage types with the one or more external parts, providing a respective vision-based damage estimate for each of the one or more external parts.
    Type: Application
    Filed: October 26, 2020
    Publication date: April 28, 2022
    Inventors: Abhilash Nvs, Adrita Barari, Ankit Sati, Payanshi Jain, Chirag Jain, Sreekanth Menon
  • Publication number: 20220129840
    Abstract: A method and system are provided where a module employing reinforcement learning (RL) can learn to solve the vehicle selection and space allocation problems for the transportation and/or storage of goods. In one embodiment, a method includes: (a) obtaining a specification of a load that includes enclosures of one or more enclosure types, and the specification includes, for each enclosure type: (i) dimensions of an enclosure of the enclosure type, and (ii) a number of enclosures of the enclosure type. The method also includes (b) obtaining a specification of vehicles of one or more vehicle types, where the specification includes, for each vehicle type: (i) dimensions of space available within a vehicle of the vehicle type, and (ii) a number of vehicles of the vehicle type that are available for transportation. The method further includes (c) providing a simulation environment for simulating loading of a vehicle.
    Type: Application
    Filed: October 26, 2020
    Publication date: April 28, 2022
    Inventors: Kajal Negi, Mohit Makkar, Yogita Rani, Rajeev Ranjan, Chirag Jain, Sreekanth Menon, Shishir Shekhar
  • Publication number: 20220108073
    Abstract: A method and system are provided for training a machine-learning (ML) system/module and to provide an ML model. In one embodiment, a method includes using a labeled entities set to train a machine learning (ML) system, to obtain an ML model, and using the trained ML model to predict labels for entities in an unlabeled entities set, yielding a machine-labeled entities set. One or more individual ML models may be trained and used in this way, where each individual ML model corresponds to a respective document source. The document sources can be identified via classification of a corpus of documents. The prediction of labels provides a respective confidence score for each machine-labeled entity. The method also includes selecting from the machine-labeled entities set, a subset of machine-labeled entities having a respective confidence score at least equal to a threshold confidence score; and updating the labeled entities set by adding thereto the selected subset of machine-labeled entities.
    Type: Application
    Filed: October 6, 2020
    Publication date: April 7, 2022
    Inventors: Sreekanth Menon, Prakash Selvakumar, Sudheesh Sudevan