Patents by Inventor Sridhar Kailasam

Sridhar Kailasam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7781327
    Abstract: Methods of resputtering material from the wafer surface include at least one operation of resputtering material under a pressure of at least 10 mTorr. The methods can be used in conjunction with an iPVD apparatus, such as hollow cathode magnetron (HCM) or planar magnetron. The resputtered material may be a diffusion barrier material or a conductive layer material. The methods provide process conditions which minimize the damage to the dielectric layer during resputtering. The methods allow considerable etching of the diffusion barrier material at the via bottom, while not damaging exposed dielectric elsewhere on the wafer. Specifically, they provide a solution for the dielectric microtrenching problem occurring during conventional resputter process. Furthermore, the methods increase the etch rate to deposition rate ratio (E/D) and improve the etch back nonuniformity (EBNU) of resputter process. In general, the methods provide IC devices with higher reliability and decrease wafer manufacturing costs.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: August 24, 2010
    Assignee: Novellus Systems, Inc.
    Inventors: Sridhar Kailasam, Robert Rozbicki, Chentao Yu, Douglas Hayden
  • Publication number: 20050181598
    Abstract: A process for enhancing the adhesion of directly plateable materials to an underlying dielectric is demonstrated, so as to withstand damascene processing. Using diffusion barriers onto which copper can be deposited facilitates conventional electrolytic processing. An ultra-thin adhesion layer is applied to a degassed, pre-cleaned substrate. The degassed and pre-cleaned substrate is exposed to a precursor gas containing the adhesion layer, optionally deposited by a plasma-assisted CVD process, resulting in the deposition of an adhesion layer inside the exposed feature. The treated wafer is then coated with a diffusion barrier material, such as ruthenium, so that the adhesion layer reacts with incoming diffusion barrier atoms. The adhesion layer may be selectively bias-sputter etched prior to the deposition of the diffusion barrier layer. A copper layer is then deposited on the diffusion barrier layer.
    Type: Application
    Filed: April 15, 2005
    Publication date: August 18, 2005
    Inventor: Sridhar Kailasam
  • Publication number: 20050098440
    Abstract: Methods are provided for electrochemically depositing copper on a work piece. One method includes the step of depositing overlying the work piece a barrier layer having a surface and subjecting the barrier layer surface to a surface treatment adapted to facilitate deposition of copper on the barrier layer. Copper then is electrochemically deposited overlying the barrier layer.
    Type: Application
    Filed: November 10, 2003
    Publication date: May 12, 2005
    Inventors: Sridhar Kailasam, John Drewery, Jonathan Reid, Eric Webb, Johanes Sukamto