Patents by Inventor Srikanth Bojja

Srikanth Bojja has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10254783
    Abstract: A clock generation circuit includes a delay chain configured to generate an N-number of clock signals at a frequency multiple that is M-times the frequency of a reference clock signal. To generate the clock signals at the frequency multiple, a multiplexer selectively inputs, to the delay chain, a delayed reference clock signal and a last clock signal generated by a last delay cell of the delay chain. In addition, a delay control generator circuit periodically compares the phases of the delayed reference clock signal and the last clock signal to set the delay of the delay chain. The clock generation circuit generates the N-number of clock signals at the frequency multiple in response to receipt of the reference clock signal, and continues to generate the clock signals at the frequency multiple when the reference clock signal is no longer being received.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: April 9, 2019
    Assignee: Western Digital Technologies, Inc.
    Inventors: Nitin Gupta, Bhavin Odedara, Raghu Voleti, Srikanth Bojja
  • Publication number: 20190004562
    Abstract: A clock generation circuit includes a delay chain configured to generate an N-number of clock signals at a frequency multiple that is M-times the frequency of a reference clock signal. To generate the clock signals at the frequency multiple, a multiplexer selectively inputs, to the delay chain, a delayed reference clock signal and a last clock signal generated by a last delay cell of the delay chain. In addition, a delay control generator circuit periodically compares the phases of the delayed reference clock signal and the last clock signal to set the delay of the delay chain. The clock generation circuit generates the N-number of clock signals at the frequency multiple in response to receipt of the reference clock signal, and continues to generate the clock signals at the frequency multiple when the reference clock signal is no longer being received.
    Type: Application
    Filed: August 31, 2017
    Publication date: January 3, 2019
    Inventors: Nitin Gupta, Bhavin Odedara, Raghu Voleti, Srikanth Bojja
  • Patent number: 9886080
    Abstract: A non-volatile memory system may include detection circuitry configured to detect that a host system is configured to initially communicate a clock signal and initialization command signals at a voltage level lower than its input/output driver circuit is configured to receive the signals. In response to the detection, the detection circuitry may switch a regulator circuit from a high voltage mode to a low voltage mode so that the input/output driver circuit is ready to receive the initialization commands at the lower voltage level.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: February 6, 2018
    Assignee: SanDisk Technologies LLC
    Inventors: Anil Kumar Thadi Suryaprakash, Krishnamurthy Dhakshinamurthy, Ajay Dhingra, Rampraveen Somasundaram, Narendhiran Chinnaanangur Ravimohan, Bhavin Odedara, Srikanth Bojja, Jayanth Thimmaiah
  • Publication number: 20180026646
    Abstract: A phase-locked loop (PLL) circuit may be configured to generate a plurality of oscillating signals based on a single control voltage generated based on a phase difference between an input signal and a feedback signal. One of the plurality of oscillating signals may be used to generate the feedback signal.
    Type: Application
    Filed: July 25, 2016
    Publication date: January 25, 2018
    Applicant: SanDisk Technologies LLC
    Inventors: Bhavin Odedara, Srikanth Bojja, Jayanth Mysore Thimmaiah, Srinivasa Rao Sabbineni
  • Patent number: 8856712
    Abstract: A flip-flop operating with standard threshold voltage MOS devices as compared with high threshold voltage MOS devices may have improved speed performance, but greater leakage current. Likewise, a flip-flop operating with high threshold voltage MOS devices may reduce the leakage current and have better power efficiency, but decreased speed and performance. An optimized flip-flop may include a combination of standard threshold voltage MOS devices and high threshold voltage MOS devices. The optimized flip-flop may have less leakage during stand-by mode as compared to a flip-flop with standard threshold voltage MOS devices. In addition, the optimized flip-flop may have better performance and speed as compared to a flip-flop with high threshold voltage MOS devices.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: October 7, 2014
    Assignee: SanDisk Technologies Inc.
    Inventors: Deepak Pancholi, Srikanth Bojja, Bhavin Odedara
  • Patent number: 8669817
    Abstract: A technique and corresponding circuitry are presented for a process independent, self-calibrating relaxation based clock source. The technique and circuitry presented here can reduce the time and cost needed for calibration significantly. The relaxation based clock source produces a clock signal whose frequency is dependent upon a trim value. Starting from an initial trim value, the clock signal is generated, its frequency is compared with a reference clock frequency value, and the trim value is correspondingly adjusted up or down a bit at a time. After this process has continued for a while, min-max logic is used to determine the maximum and minimum trim values and, based on these, the final trim value for the clock is set. This calibration process can also be used to extract whether, and by how much, the implementation on silicon of a particular chip lies in the fast or slow process corners.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: March 11, 2014
    Assignee: SanDisk Technologies Inc.
    Inventors: Deepak Pancholi, Bhavin Odedara, Naidu Prasad, Srikanth Bojja, Srinivasa Rao Sabbineni, Jayaprakash Naradasi
  • Publication number: 20140043078
    Abstract: A flip-flop operating with standard threshold voltage MOS devices as compared with high threshold voltage MOS devices may have improved speed performance, but greater leakage current. Likewise, a flip-flop operating with high threshold voltage MOS devices may reduce the leakage current and have better power efficiency, but decreased speed and performance. An optimized flip-flop may include a combination of standard threshold voltage MOS devices and high threshold voltage MOS devices. The optimized flip-flop may have less leakage during stand-by mode as compared to a flip-flop with standard threshold voltage MOS devices. In addition, the optimized flip-flop may have better performance and speed as compared to a flip-flop with high threshold voltage MOS devices.
    Type: Application
    Filed: October 24, 2012
    Publication date: February 13, 2014
    Applicant: SanDisk Technologies Inc.
    Inventors: Deepak Pancholi, Srikanth Bojja, Bhavin Odedara
  • Publication number: 20120062326
    Abstract: A technique and corresponding circuitry are presented for a process independent, self-calibrating relaxation based clock source. The technique and circuitry presented here can reduce the time and cost needed for calibration significantly. The relaxation based clock source produces a clock signal whose frequency is dependent upon a trim value. Starting from an initial trim value, the clock signal is generated, its frequency is compared with a reference clock frequency value, and the trim value is correspondingly adjusted up or down a bit at a time. After this process has continued for a while, min-max logic is used to determine the maximum and minimum trim values and, based on these, the final trim value for the clock is set. This calibration process can also be used to extract whether, and by how much, the implementation on silicon of a particular chip lies in the fast or slow process corners.
    Type: Application
    Filed: November 21, 2011
    Publication date: March 15, 2012
    Inventors: Deepak Pancholi, Bhavin Odedara, Naidu Prasad, Srikanth Bojja, Srinivasa Rao Sabbineni, Jayaprakash Naradasi
  • Patent number: 8085099
    Abstract: A technique and corresponding circuitry are presented for a process independent, self-calibrating relaxation based clock source. The technique and circuitry presented here can reduce the time and cost needed for calibration significantly. The relaxation based clock source produces a clock signal whose frequency is dependent upon a trim value. Starting from an initial trim value, the clock signal is generated, its frequency is compared with a reference clock frequency value, and the trim value is correspondingly adjusted up or down a bit at a time. After this process has continued for a while, min-max logic is used to determine the maximum and minimum trim values and, based on these, the final trim value for the clock is set. This calibration process can also be used to extract whether, and by how much, the implementation on silicon of a particular chip lies in the fast or slow process corners.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: December 27, 2011
    Assignee: SanDisk Technologies Inc.
    Inventors: Deepak Pancholi, Bhavin Odedara, Naidu Prasad, Srikanth Bojja, Srinivasa Rao Sabbineni, Jayaprakash Naradasi
  • Publication number: 20110241784
    Abstract: A technique and corresponding circuitry are presented for a process independent, self-calibrating relaxation based clock source. The technique and circuitry presented here can reduce the time and cost needed for calibration significantly. The relaxation based clock source produces a clock signal whose frequency is dependent upon a trim value. Starting from an initial trim value, the clock signal is generated, its frequency is compared with a reference clock frequency value, and the trim value is correspondingly adjusted up or down a bit at a time. After this process has continued for a while, min-max logic is used to determine the maximum and minimum trim values and, based on these, the final trim value for the clock is set. This calibration process can also be used to extract whether, and by how much, the implementation on silicon of a particular chip lies in the fast or slow process corners.
    Type: Application
    Filed: April 6, 2010
    Publication date: October 6, 2011
    Inventors: Deepak Pancholi, Bhavin Odedara, Naidu Prasad, Srikanth Bojja, Srinivasa Rao Sabbineni, Jayaprakash Naradasi