Patents by Inventor Srikanth Radhakrishnan

Srikanth Radhakrishnan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150231353
    Abstract: The volume of a hyperinflated lung compartment is reduced by sealing a distal end of the catheter in an airway feeding the lung compartment. Air passes out of the lung compartment through a passage in the catheter while the patient exhales. A one-way flow element associated with the catheter prevents air from re-entering the lung compartment as the patient inhales. Over time, the pressure of regions surrounding the lung compartment cause it to collapse as the volume of air diminishes. Residual volume reduction effectively results in functional lung volume expansion. Optionally, the lung compartment may be sealed in order to permanently prevent air from re-entering the lung compartment. The invention further discloses a catheter with a transparent occlusion element at its tip that enables examination of the lung passageway through a viewing scope.
    Type: Application
    Filed: May 4, 2015
    Publication date: August 20, 2015
    Applicant: Pulmonx Corporation
    Inventors: Nikolai Aljuri, Rodney C. Perkins, Ryan Olivera, Hoang Nguyen, Srikanth Radhakrishnan, Niyahi Beyhan
  • Patent number: 9107606
    Abstract: A method for determining lung function in a patient is disclosed, in which a multi-lumen catheter with an expandable occluding element at its end is used to isolate a targeted lung compartment, and respiratory characteristics at the targeted lung compartment are measured over multiple respiratory cycles. The relation between various characteristics of the respiratory cycle is used to determine compliance of lung tissue within the targeted lung compartment.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: August 18, 2015
    Assignee: PULMONX CORPORATION
    Inventors: Srikanth Radhakrishnan, Surag Mantri, Ryan Olivera
  • Publication number: 20150150486
    Abstract: A method of assessing a lung compartment of a patient may involve: advancing a diagnostic catheter into a lung airway leading to a first sub-compartment of the lung compartment; inflating an occluding member disposed on the diagnostic catheter to form a seal with a wall of the airway and thus isolate the first sub-compartment; introducing a diagnostic gas into the first sub-compartment; and recording a perfusion value of the diagnostic gas within the first sub-compartment.
    Type: Application
    Filed: February 12, 2015
    Publication date: June 4, 2015
    Inventors: Surag Mantri, Srikanth Radhakrishnan
  • Publication number: 20140336484
    Abstract: Methods and systems for targeting, accessing and diagnosing diseased lung compartments are disclosed. The method comprises introducing a diagnostic catheter with an occluding member at its distal end into a lung segment via an assisted ventilation device; inflating the occluding member to isolate the lung segment; and performing a diagnostic procedure with the catheter while the patient is ventilated. The proximal end of the diagnostic catheter is configured to be attached to a console. The method may also comprise introducing the diagnostic catheter into the lung segment; inflating the occluding member to isolate the lung segment; and monitoring blood oxygen saturation. The method may further comprise introducing the diagnostic catheter into the lung segment; determining tidal flow volume in the lung segment; determining total lung capacity of the patient; and determining a flow rank value based on the tidal flow volume of the lung segment and the total lung capacity.
    Type: Application
    Filed: July 23, 2014
    Publication date: November 13, 2014
    Inventors: Surag Mantri, Srikanth Radhakrishnan
  • Patent number: 8808194
    Abstract: Methods and systems for targeting, accessing and diagnosing diseased lung compartments are disclosed. The method comprises introducing a diagnostic catheter with an occluding member at its distal end into a lung segment via an assisted ventilation device; inflating the occluding member to isolate the lung segment; and performing a diagnostic procedure with the catheter while the patient is ventilated. The proximal end of the diagnostic catheter is configured to be attached to a console. The method may also comprise introducing the diagnostic catheter into the lung segment; inflating the occluding member to isolate the lung segment; and monitoring blood oxygen saturation. The method may further comprise introducing the diagnostic catheter into the lung segment; determining tidal flow volume in the lung segment; determining total lung capacity of the patient; and determining a flow rank value based on the tidal flow volume of the lung segment and the total lung capacity.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: August 19, 2014
    Assignee: Pulmonx Corporation
    Inventors: Surag Mantri, Srikanth Radhakrishnan
  • Publication number: 20120149995
    Abstract: Methods and systems for targeting, accessing and diagnosing diseased lung compartments are disclosed. The method comprises introducing a diagnostic catheter with an occluding member at its distal end into a lung segment via an assisted ventilation device; inflating the occluding member to isolate the lung segment; and performing a diagnostic procedure with the catheter while the patient is ventilated. The proximal end of the diagnostic catheter is configured to be attached to a console. The method may also comprise introducing the diagnostic catheter into the lung segment; inflating the occluding member to isolate the lung segment; and monitoring blood oxygen saturation. The method may further comprise introducing the diagnostic catheter into the lung segment; determining tidal flow volume in the lung segment; determining total lung capacity of the patient; and determining a flow rank value based on the tidal flow volume of the lung segment and the total lung capacity.
    Type: Application
    Filed: June 30, 2011
    Publication date: June 14, 2012
    Applicant: PULMONX CORPORATION
    Inventors: Surag Mantri, Srikanth Radhakrishnan
  • Publication number: 20120150027
    Abstract: A method of assessing a lung compartment of a patient may involve: advancing a diagnostic catheter into a lung airway leading to a first sub-compartment of the lung compartment; inflating an occluding member disposed on the diagnostic catheter to form a seal with a wall of the airway and thus isolate the first sub-compartment; introducing a diagnostic gas into the first sub-compartment; and recording a perfusion value of the diagnostic gas within the first sub-compartment.
    Type: Application
    Filed: June 30, 2011
    Publication date: June 14, 2012
    Applicant: PULMONX CORPORATION
    Inventors: Surag Mantri, Srikanth Radhakrishnan
  • Publication number: 20120149978
    Abstract: Devices, systems, and methods for measuring the diameter of an airway in a human or animal subject are disclosed. The device comprises a flexible catheter body having a proximal end and a distal end. Flexible sizing elements are disposed along and extend approximately orthogonally from the catheter body. The sizing elements have different heights from one another and are configured to fit through the working channel of a bronchoscope. Devices, systems, and methods for redirecting airflow through a lung airway are also disclosed. The method comprises introducing into the airway a catheter comprising a distal end, a proximal end and an elongated portion therebetween, wherein the distal end comprises an airway closing mechanism, and wherein the proximal end comprises an actuator to actuate the airway closing mechanism; and actuating the airway closing mechanism to at least partially close the airway.
    Type: Application
    Filed: June 30, 2011
    Publication date: June 14, 2012
    Applicant: PULMONX CORPORATION
    Inventors: Ryan Olivera, Srikanth Radhakrishnan
  • Publication number: 20110313307
    Abstract: A method for determining lung function in a patient is disclosed, in which a multi-lumen catheter with an expandable occluding element at its end is used to isolate a targeted lung compartment, and respiratory characteristics at the targeted lung compartment are measured over multiple respiratory cycles. The relation between various characteristics of the respiratory cycle is used to determine compliance of lung tissue within the targeted lung compartment.
    Type: Application
    Filed: December 9, 2010
    Publication date: December 22, 2011
    Applicant: Pulmonx Corporation
    Inventors: Srikanth Radhakrishnan, Surag Mantri, Ryan Olivera
  • Publication number: 20110301483
    Abstract: A method of determining potential treatment sites in a diseased lung is disclosed, in which an assessment catheter is introduced into a lung passageway. The catheter has a distal portion comprising an occluding member and a proximal portion configured to operatively mate with an external console. The catheter is used to identify one or more assessment sites within the airways of the lung. At each assessment site, at least one physiological, anatomical or biological characteristic is determined. A characteristic score for each assessment site is calculated based on a predetermined algorithm; and a treatment is determined based on the scores of the assessment sites. The algorithm takes into account several parameters including the disease characteristics as well as the number and proximity of each assessment site to at least one of the diseased regions. The method envisages treatment of emphysema, asthma or bronchopleural leak.
    Type: Application
    Filed: December 8, 2010
    Publication date: December 8, 2011
    Applicant: Pulmonx Corporation
    Inventors: Niyazi Beyhan, Srikanth Radhakrishnan
  • Publication number: 20110295141
    Abstract: A method for assessing lung function in a patient is disclosed. The method comprises isolating a lung compartment. Thereafter, in one embodiment, an inhaled gas of known composition is introduced into the lung and compared to the composition of the exhaled gas. Alternatively, accumulated CO2 content is measured within the isolated lung compartment over time, and compared to a baseline CO2 content. Alternatively, a change in pressure of an isolated lung compartment may be monitored. Alternatively, the magnitude of the range of CO2 values in an isolated lung compartment can be compared to a predetermined threshold. Any of the results obtained via these alternative embodiments may be used to determine lung function.
    Type: Application
    Filed: November 24, 2010
    Publication date: December 1, 2011
    Applicant: Pulmonx Corporation
    Inventors: Srikanth Radhakrishnan, Ryan Olivera, Niyazi Beyhan, Surag Mantri, Lutz Freitag