Patents by Inventor Srinivas A. Tadigadapa

Srinivas A. Tadigadapa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10973435
    Abstract: An ultra-low field pre-pulse Magnetic Resonance Imaging (PMRI) system for a head includes RF coils defining a bore for head access, a pre-pulse coil outside the RF coils, and a coil assembly including a main magnetic field coil and gradient coils outside the pre-pulse coil. The PMRI system includes a first cylindrical shield concentric with the RF coils and made from conductive materials. The first cylindrical shield partially encloses the RF coils and inside the pre-pulse coil for shielding the RF coils from environmental electromagnetic disturbances.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: April 13, 2021
    Assignees: THE PENN STATE RESEARCH FOUNDATION, TRIAD NATIONAL SECURITY, LLC
    Inventors: Steven J. Schiff, Johnes Obungoloch, Joshua Harper, Srinivas Tadigadapa, Igor Savukov
  • Publication number: 20200121213
    Abstract: An ultra-low field pre-pulse Magnetic Resonance Imaging (PMRI) system for a head includes RF coils defining a bore for head access, a pre-pulse coil outside the RF coils, and a coil assembly including a main magnetic field coil and gradient coils outside the pre-pulse coil. The PMRI system includes a first cylindrical shield concentric with the RF coils and made from conductive materials. The first cylindrical shield partially encloses the RF coils and inside the pre-pulse coil for shielding the RF coils from environmental electromagnetic disturbances.
    Type: Application
    Filed: April 27, 2018
    Publication date: April 23, 2020
    Applicant: TRIAD National Security, LLC
    Inventors: Steven J. Schiff, Johnes Obungoloch, Joshua Harper, Srinivas Tadigadapa, Igor Savukov
  • Patent number: 10578594
    Abstract: A sensing and analysis system on a chip for sensing and analyzing chemical or biological analytes includes a chromatography column having an inlet and an outlet formed on the chip for temporal separation of components of analytes and at least one whispering gallery mode (WGM) optical resonator for sensing of the components. The chromatography column is formed on a first wafer layer. Each WGM optical resonator includes a hollow sealed enclosure formed at or over the inlet or the outlet of or elsewhere along the chromatography column such that a gas flowing through the chromatography column fills the hollow sealed enclosure. Each WGM optical resonator further includes an optical waveguide aligned with the sealed hollow enclosure for evanescent wave light coupling.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: March 3, 2020
    Assignee: The Penn State Research Foundation
    Inventors: Srinivas Tadigadapa, Eugene Freeman, Chenchen Zhang
  • Patent number: 10352800
    Abstract: A pressure sensor includes a piezoelectric substrate having a generally planar structure and an anchor location fixing the piezoelectric substrate at the periphery of the planar structure of the piezoelectric substrate. The planar structure of the piezoelectric substrate has a first region having a first characteristic thickness adjacent to the anchor location, and a second region have a second characteristic thickness at a middle region of the substrate. The second characteristic thickness is less than the first characteristic thickness such that the planar structure in the second region is displaced relative to the neutral axis of the planar structure such that while undergoing bending the second region has either mostly compressive or mostly tensile stress.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: July 16, 2019
    Assignee: MKS Instruments, Inc.
    Inventors: Srinivas Tadigadapa, Nishit Goel, Stephen Bart
  • Patent number: 10184845
    Abstract: Methods, apparatus, and systems to improve thermal sensitivity of resonant circuits. One aspect utilizes tracking near-resonance complex impedance for a quartz resonator based calorimeter sensor to derive ultra-sensitive temperature measurement from the sensor. Another aspect includes a quartz resonant or -based calorimetric sensor placed close to but not touching the analyte being measured to eliminate mass loading effect on the temperature measurement.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: January 22, 2019
    Assignee: The Penn State Research Foundation
    Inventors: Srinivas A. Tadigadapa, Marcelo B. Pisani
  • Publication number: 20180180580
    Abstract: A sensing and analysis system on a chip for sensing and analyzing chemical or biological analytes includes a chromatography column having an inlet and an outlet formed on the chip for temporal separation of components of analytes and at least one whispering gallery mode (WGM) optical resonator for sensing of the components. The chromatography column is formed on a first wafer layer. Each WGM optical resonator includes a hollow sealed enclosure formed at or over the inlet or the outlet of or elsewhere along the chromatography column such that a gas flowing through the chromatography column fills the hollow sealed enclosure. Each WGM optical resonator further includes an optical waveguide aligned with the sealed hollow enclosure for evanescent wave light coupling.
    Type: Application
    Filed: December 27, 2017
    Publication date: June 28, 2018
    Inventors: Srinivas Tadigadapa, Eugene Freeman, Chenchen Zhang
  • Patent number: 9966232
    Abstract: A system and method for reactive ion etching (RIE) system of a material is provided. The system includes a plasma chamber comprising a plasma source and a gas inlet, a diffusion chamber comprising a substrate holder for supporting a substrate with a surface comprising the material and a gas diffuser, and a source of a processing gas coupled to the gas diffuser. In the system and method, at least one radical of the processing gas is reactive with the material to perform etching of the material, the gas diffuser is configured to introduce the processing gas into the processing region, and the substrate holder comprises an electrode that can be selectively biased to draw ions generated by the plasma source into the processing region to interact with the at least one processing gas to generate the at least one radical at the surface.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: May 8, 2018
    Assignee: The Penn State Research Foundation
    Inventors: Srinivas Tadigadapa, Gokhan Hatipoglu
  • Publication number: 20170350779
    Abstract: A pressure sensor includes a piezoelectric substrate having a generally planar structure and an anchor location fixing the piezoelectric substrate at the periphery of the planar structure of the piezoelectric substrate. The planar structure of the piezoelectric substrate has a first region having a first characteristic thickness adjacent to the anchor location, and a second region have a second characteristic thickness at a middle region of the substrate. The second characteristic thickness is less than the first characteristic thickness such that the planar structure in the second region is displaced relative to the neutral axis of the planar structure such that while undergoing bending the second region has either mostly compressive or mostly tensile stress.
    Type: Application
    Filed: May 23, 2017
    Publication date: December 7, 2017
    Applicant: MKS Instruments, Inc.
    Inventors: Srinivas Tadigadapa, Nishit Goel, Stephen Bart
  • Publication number: 20160099132
    Abstract: A system and method for reactive ion etching (RIE) system of a material is provided. The system includes a plasma chamber comprising a plasma source and a gas inlet, a diffusion chamber comprising a substrate holder for supporting a substrate with a surface comprising the material and a gas diffuser, and a source of a processing gas coupled to the gas diffuser. In the system and method, at least one radical of the processing gas is reactive with the material to perform etching of the material, the gas diffuser is configured to introduce the processing gas into the processing region, and the substrate holder comprises an electrode that can be selectively biased to draw ions generated by the plasma source into the processing region to interact with the at least one processing gas to generate the at least one radical at the surface.
    Type: Application
    Filed: December 9, 2015
    Publication date: April 7, 2016
    Inventors: Srinivas TADIGADAPA, Gokhan HATIPOGLU
  • Publication number: 20160033341
    Abstract: Methods, apparatus, and systems to improve thermal sensitivity of resonant circuits. One aspect utilizes tracking near-resonance complex impedance for a quartz resonator based calorimeter sensor to derive ultra-sensitive temperature measurement from the sensor. Another aspect includes a quartz resonant or—based calorimetric sensor placed close to but not touching the analyte being measured to eliminate mass loading effect on the temperature measurement.
    Type: Application
    Filed: July 17, 2015
    Publication date: February 4, 2016
    Inventors: Srinivas A. Tadigadapa, Marcelo B. Pisani
  • Patent number: 9121771
    Abstract: Methods, apparatus, and systems to improve thermal sensitivity of resonant circuits. One aspect utilizes tracking near-resonance complex impedance for a quartz resonator based calorimeter sensor to derive ultra-sensitive temperature measurement from the sensor. Another aspect includes a quartz resonant or -based calorimetric sensor placed close to but not touching the analyte being measured to eliminate mass loading effect on the temperature measurement.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: September 1, 2015
    Assignee: THE PENN STATE RESEARCH FOUNDATION
    Inventors: Srinivas A. Tadigadapa, Marcelo Pisani
  • Patent number: 8932525
    Abstract: Described herein is an apparatus for characterizing an analyte in breath and related method. The apparatus comprises an interactant that is configured to interact with the analyte in breath to generate a change in thermal energy relative to a base thermal energy. The apparatus further comprises a piezoelectric system that is coupled to the interactant, comprises at least one piezoelectric material having a material property, and generates a signal that comprises information useful in characterizing the analyte in breath. The signal is in response to a change in a material property of the piezoelectric material. The change in the material property is in response to the change in thermal energy. The apparatus may be used for a variety of applications such as, for example, personal health monitoring, clinical diagnostics, safety and law enforcement monitoring, and others.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: January 13, 2015
    Assignee: Invoy Technologies, LLC
    Inventors: Lubna M. Ahmad, Srinivas Tadigadapa
  • Publication number: 20140166618
    Abstract: A system and method for reactive ion etching (RIE) system of a material is provided. The system includes a plasma chamber comprising a plasma source and a gas inlet, a diffusion chamber comprising a substrate holder for supporting a substrate with a surface comprising the material and a gas diffuser, and a source of a processing gas coupled to the gas diffuser. In the system and method, at least one radical of the processing gas is reactive with the material to perform etching of the material, the gas diffuser is configured to introduce the processing gas into the processing region, and the substrate holder comprises an electrode that can be selectively biased to draw ions generated by the plasma source into the processing region to interact with the at least one processing gas to generate the at least one radical at the surface.
    Type: Application
    Filed: October 14, 2013
    Publication date: June 19, 2014
    Applicant: THE PENN STATE RESEARCH FOUNDATION
    Inventors: Srinivas TADIGADAPA, Gokhan HATIPOGLU
  • Publication number: 20110228809
    Abstract: Methods, apparatus, and systems to improve thermal sensitivity of resonant circuits. One aspect utilizes tracking near-resonance complex impedance for a quartz resonator based calorimeter sensor to derive ultra-sensitive temperature measurement from the sensor. Another aspect includes a quartz resonant or -based calorimetric sensor placed close to but not touching the analyte being measured to eliminate mass loading effect on the temperature measurement.
    Type: Application
    Filed: March 16, 2011
    Publication date: September 22, 2011
    Applicant: THE PENN STATE RESEARCH FOUNDATION
    Inventor: Srinivas A. Tadigadapa
  • Patent number: 7814776
    Abstract: Methods for sensing and building sensors provide for adding nanotubes to a sensor to improve characteristics such as the Q-factor associated with the sensor. Mass loading and damping characteristics of micromachined quartz crystal resonators on which a thin film of debundled single-walled carbon nanotube (SWNT) has been deposited are disclosed. An absolute mass sensitivity of ˜100 fg was experimentally measured by monitoring the continuous desorption of gases from SWNT surfaces in a vacuum ambient.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: October 19, 2010
    Assignee: The Penn State Research Foundation
    Inventors: Peter C. Eklund, Abhijat Goyal, Srinivas A. Tadigadapa
  • Publication number: 20090145233
    Abstract: Methods for sensing and building sensors provide for adding nanotubes to a sensor to improve characteristics such as the Q-factor associated with the sensor. Mass loading and damping characteristics of micromachined quartz crystal resonators on which a thin film of debundled single-walled carbon nanotube (SWNT) has been deposited are disclosed. An absolute mass sensitivity of ˜100 fg was experimentally measured by monitoring the continuous desorption of gases from SWNT surfaces in a vacuum ambient.
    Type: Application
    Filed: November 10, 2005
    Publication date: June 11, 2009
    Applicant: THE PENN STATE RESEARCH FOUNDATION
    Inventors: Peter C. Eklund, Abhijat Goyal, Srinivas A. Tadigadapa
  • Patent number: 6935010
    Abstract: Micromachine fluidic apparatus incorporates a free-standing tube section and electrodes to actuate or control the movement of the tube section, or to sense the movement of the tube section, or both. Electronic circuitry, which may be disposed on the same substrate as the fluidic portion of the apparatus, is used in conjunction with the tube and electrodes in conjunction with a variety of different applications, including fluid flow measurement, fluid density measurement, fluid viscosity measurement, fluid transport, separation and/or mixing. According to a particular embodiment, the free-standing section of the tube is resonated for fluid flow and density measurements according to the Coriolis effect. Capacitive/electrostatic actuation techniques are used to control or resonate the free-standing section of the tube, and to detect variations in tube movement.
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: August 30, 2005
    Assignee: Integrated Sensing Systems, Inc.
    Inventors: Srinivas Tadigadapa, Chialun Tsai, Yafan Zhang, Nader Najafi
  • Publication number: 20030061889
    Abstract: Micromachine fluidic apparatus incorporates a free-standing tube section and electrodes to actuate or control the movement of the tube section, or to sense the movement of the tube section, or both. Electronic circuitry, which may be disposed on the same substrate as the fluidic portion of the apparatus, is used in conjunction with the tube and electrodes in conjunction with a variety of different applications, including fluid flow measurement, fluid density measurement, fluid viscosity measurement, fluid transport, separation and/or mixing. According to a particular embodiment, the freestanding section of the tube is resonated for fluid flow and density measurements according to the Coriolis effect. Capacitive/electrostatic actuation techniques are used to control or resonate the free-standing section of the tube, and to detect variations in tube movement.
    Type: Application
    Filed: September 3, 2002
    Publication date: April 3, 2003
    Inventors: Srinivas Tadigadapa, Chialun Tsai, Yafan Zhang, Nader Najafi
  • Patent number: 6499354
    Abstract: Unwanted gasses created during bonding within micromachined vacuum cavities are reduced in a manner conducive to mass manufacturing. Two broad approaches may be applied separately or in combination according to the invention. One method is to deposit a barrier layer within the cavity (for example, on an exposed surface of the substrate). Such a layer not only provides a barrier against gases diffusing out of the substrate, but is also chosen so as to not outgas by itself. Another approach is to use a material which, instead of, or in addition to, acting as a barrier layer, acts as a getterer, such that it reacts with and traps unwanted gases. Incorporation of a getterer according to the invention can be as straightforward as depositing a thin metal layer on the substrate, which reacts to remove the impurities, or can be more elaborate through the use of a non-evaporable getter in a separate cavity in gaseous communication with the cavity.
    Type: Grant
    Filed: May 4, 1999
    Date of Patent: December 31, 2002
    Assignee: Integrated Sensing Systems (ISSYS), Inc.
    Inventors: Nader Najafi, Sonbol Massoud-Ansari, Srinivas Tadigadapa, Yafan Zhang
  • Patent number: 6477901
    Abstract: Micromachine fluidic apparatus incorporates a free-standing tube section and electrodes to actuate or control the movement of the tube section, or to sense the movement of the tube section, or both. Electronic circuitry, which may be disposed on the same substrate as the fluidic portion of the apparatus, is used in conjunction with the tube and electrodes in conjunction with a variety of different applications, including fluid flow measurement, fluid density measurement, fluid viscosity measurement, fluid transport, separation and/or mixing. According to a particular embodiment, the free-standing section of the tube is resonated for fluid flow and density measurements according to the Coriolis effect. Capacitive/electrostatic actuation techniques are used to control or resonate the free-standing section of the tube, and to detect variations in tube movement.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: November 12, 2002
    Assignee: Integrated Sensing Systems, Inc.
    Inventors: Srinivas Tadigadapa, Chialun Tsai, Yafan Zhang, Nader Najafi