Patents by Inventor Srinivas Kumar Reddy Naru
Srinivas Kumar Reddy Naru has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20190181842Abstract: In some embodiments, a multiplier-based programmable filter comprises a pre-scaling circuit, a first multiplier circuit coupled to a first output of the pre-scaling circuit and a second output of the pre-scaling circuit, and a second multiplier circuit coupled to the first output of the pre-scaling circuit and the second output of the pre-scaling circuit. In some embodiments, the multiplier-based programmable filter also comprises a first adder coupled to a first output of the first multiplier circuit and a second output of the first multiplier circuit, a second adder coupled to a first output of the second multiplier circuit and a second output of the second multiplier circuit, first register coupled to an output of the first adder and an input of the second adder, and a second register coupled to an output of the second adder.Type: ApplicationFiled: December 12, 2017Publication date: June 13, 2019Inventors: Sundarrajan RANGACHARI, Jaiganesh BALAKRISHNAN, Jawaharlal TANGUDU, Srinivas Kumar Reddy NARU
-
Patent number: 10320405Abstract: In described examples, an analog to digital converter (ADC) includes a flash ADC. The flash ADC generates a flash output in response to an input signal, and an error correction block generates a known pattern. A selector block is coupled to the flash ADC and the error correction block, and generates a plurality of selected signals in response to the flash output and the known pattern. A digital to analog converter (DAC) is coupled to the selector block, and generates a coarse analog signal in response to the plurality of selected signals. A residue amplifier is coupled to the DAC, and generates a residual analog signal in response to the coarse analog signal, the input signal and an analog PRBS (pseudo random binary sequence) signal. A residual ADC generates a residual code in response to the residual analog signal.Type: GrantFiled: March 1, 2018Date of Patent: June 11, 2019Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Srinivas Kumar Reddy Naru, Visvesvaraya Pentakota Appala, Shagun Dusad, Neeraj Shrivastava, Viswanathan Nagarajan, Ani Xavier, Rishi Soundararajan, Sai Aditya Nurani, Roswald Francis
-
Patent number: 10305451Abstract: In some embodiments, a multiplier-based programmable filter comprises a pre-scaling circuit, a first multiplier circuit coupled to a first output of the pre-scaling circuit and a second output of the pre-scaling circuit, and a second multiplier circuit coupled to the first output of the pre-scaling circuit and the second output of the pre-scaling circuit. In some embodiments, the multiplier-based programmable filter also comprises a first adder coupled to a first output of the first multiplier circuit and a second output of the first multiplier circuit, a second adder coupled to a first output of the second multiplier circuit and a second output of the second multiplier circuit, first register coupled to an output of the first adder and an input of the second adder, and a second register coupled to an output of the second adder.Type: GrantFiled: December 12, 2017Date of Patent: May 28, 2019Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Sundarrajan Rangachari, Jaiganesh Balakrishnan, Jawaharlal Tangudu, Srinivas Kumar Reddy Naru
-
Publication number: 20190007071Abstract: A pipeline ADC comprising an ADC segment and a digital backend coupled to the ADC segment. In some examples the ADC is configured to receive an analog signal, generate a first partial digital code representing a first sample of the analog signal, and generate a second partial digital code representing a second sample of the analog signal. In some examples the digital backend is configured to receive the first and second partial digital codes from the ADC segment, generate a combined digital code based at least partially on the first and second partial digital codes, determine a gain error of the ADC segment based at least partially on a first correlation of a PRBS with a difference between the first and second partial digital codes, and apply a first correction to the combined digital code based at least partially on the gain error of the ADC segment.Type: ApplicationFiled: September 10, 2018Publication date: January 3, 2019Inventors: Viswanathan NAGARAJAN, Srinivas Kumar Reddy NARU, Narasimhan RAJAGOPAL
-
Patent number: 10103753Abstract: A pipeline ADC comprising an ADC segment and a digital backend coupled to the ADC segment. In some examples the ADC is configured to receive an analog signal, generate a first partial digital code representing a first sample of the analog signal, and generate a second partial digital code representing a second sample of the analog signal. In some examples the digital backend is configured to receive the first and second partial digital codes from the ADC segment, generate a combined digital code based at least partially on the first and second partial digital codes, determine a gain error of the ADC segment based at least partially on a first correlation of a PRBS with a difference between the first and second partial digital codes, and apply a first correction to the combined digital code based at least partially on the gain error of the ADC segment.Type: GrantFiled: December 8, 2017Date of Patent: October 16, 2018Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Viswanathan Nagarajan, Srinivas Kumar Reddy Naru, Narasimhan Rajagopal
-
Publication number: 20180191362Abstract: The disclosure provides an analog to digital converter (ADC). The ADC includes a flash ADC. The flash ADC generates a flash output in response to an input signal, and an error correction block generates a known pattern. A selector block is coupled to the flash ADC and the error correction block, and generates a plurality of selected signals in response to the flash output and the known pattern. A digital to analog converter (DAC) is coupled to the selector block, and generates a coarse analog signal in response to the plurality of selected signals. A residue amplifier is coupled to the DAC, and generates a residual analog signal in response to the coarse analog signal, the input signal and an analog PRBS (pseudo random binary sequence) signal. A residual ADC generates a residual code in response to the residual analog signal.Type: ApplicationFiled: March 1, 2018Publication date: July 5, 2018Inventors: Srinivas Kumar Reddy Naru, Visvesvaraya Pentakota Appala, Shagun Dusad, Neeraj Shrivastava, Viswanathan Nagarajan, Ani Xavier, Rishi Soundararajan, Sai Aditya Nurani, Roswald Francis
-
Patent number: 9941893Abstract: An ADC includes a flash ADC. The flash ADC generates a flash output in response to an input signal, and an error correction block generates a known pattern. A selector block is coupled to the flash ADC and the error correction block, and generates a plurality of selected signals in response to the flash output and the known pattern. A digital to analog converter (DAC) is coupled to the selector block, and generates a coarse analog signal in response to the plurality of selected signals. A residue amplifier is coupled to the DAC, and generates a residual analog signal in response to the coarse analog signal, the input signal and an analog PRBS (pseudo random binary sequence) signal. A residual ADC generates a residual code in response to the residual analog signal.Type: GrantFiled: April 12, 2017Date of Patent: April 10, 2018Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Srinivas Kumar Reddy Naru, Visvesvaraya Pentakota Appala, Shagun Dusad, Neeraj Shrivastava, Viswanathan Nagarajan, Ani Xavier, Rishi Soundararajan, Sai Aditya Nurani, Roswald Francis
-
Publication number: 20170302287Abstract: The disclosure provides an analog to digital converter (ADC). The ADC includes a flash ADC. The flash ADC generates a flash output in response to an input signal, and an error correction block generates a known pattern. A selector block is coupled to the flash ADC and the error correction block, and generates a plurality of selected signals in response to the flash output and the known pattern. A digital to analog converter (DAC) is coupled to the selector block, and generates a coarse analog signal in response to the plurality of selected signals. A residue amplifier is coupled to the DAC, and generates a residual analog signal in response to the coarse analog signal, the input signal and an analog PRBS (pseudo random binary sequence) signal. A residual ADC generates a residual code in response to the residual analog signal.Type: ApplicationFiled: April 12, 2017Publication date: October 19, 2017Inventors: Srinivas Kumar Reddy Naru, Visvesvaraya Pentakota Appala, Shagun Dusad, Neeraj Shrivastava, Viswanathan Nagarajan, Ani Xavier, Rishi Soundararajan, Sai Aditya Nurani, Roswald Francis
-
Patent number: 9748966Abstract: A system includes an analog-to-digital converter (ADC) including an ADC input terminal; an ADC output terminal; and analog components configured to convert an analog signal received at the ADC input terminal to a digital signal. The system also includes a histogram estimation circuit coupled to the ADC output terminal and configured to generate information on a plurality of codes generated by the ADC and determine a region defining a range of codes corresponding to an occurrence of an error caused by the analog components of the ADC. The system also includes a dither circuit coupled to the ADC input terminal and configured to introduce a dither in the analog signal to generate a modified analog signal.Type: GrantFiled: August 8, 2016Date of Patent: August 29, 2017Assignee: Texas Instruments IncorporatedInventors: Viswanathan Nagarajan, Srinivas Kumar Reddy Naru, Ratna Kumar Venkata Parupudi
-
Publication number: 20170041013Abstract: A system includes an analog-to-digital converter (ADC) including an ADC input terminal; an ADC output terminal; and analog components configured to convert an analog signal received at the ADC input terminal to a digital signal. The system also includes a histogram estimation circuit coupled to the ADC output terminal and configured to generate information on a plurality of codes generated by the ADC and determine a region defining a range of codes corresponding to an occurrence of an error caused by the analog components of the ADC. The system also includes a dither circuit coupled to the ADC input terminal and configured to introduce a dither in the analog signal to generate a modified analog signal.Type: ApplicationFiled: August 8, 2016Publication date: February 9, 2017Inventors: Viswanathan NAGARAJAN, Srinivas Kumar Reddy NARU, Ratna Kumar Venkata PARUPUDI
-
Publication number: 20160315629Abstract: In described examples, an analog to digital converter (ADC) includes a main ADC and a reference ADC. The main ADC generates a zone information signal and a digital output in response to an input signal. The reference ADC receives a plurality of reference voltages from the main ADC. The plurality of reference voltages includes a first reference voltage and a second reference voltage. The reference ADC generates a reference output in response to the input signal, the first reference voltage and the second reference voltage. A subtractor generates an error signal in response to the digital output and the reference output. A logic block generates one of a first offset correction signal, a second offset correction signal and a gain mismatch signal in response to the zone information signal, the error signal and the reference output.Type: ApplicationFiled: September 30, 2015Publication date: October 27, 2016Inventors: Srinivas Kumar Reddy NARU, Nagarajan VISWANATHAN, Visvesvaraya PENTAKOTA
-
Patent number: 9479186Abstract: In described examples, an analog to digital converter (ADC) includes a main ADC and a reference ADC. The main ADC generates a zone information signal and a digital output in response to an input signal. The reference ADC receives a plurality of reference voltages from the main ADC. The plurality of reference voltages includes a first reference voltage and a second reference voltage. The reference ADC generates a reference output in response to the input signal, the first reference voltage and the second reference voltage. A subtractor generates an error signal in response to the digital output and the reference output. A logic block generates one of a first offset correction signal, a second offset correction signal and a gain mismatch signal in response to the zone information signal, the error signal and the reference output.Type: GrantFiled: September 30, 2015Date of Patent: October 25, 2016Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Srinivas Kumar Reddy Naru, Nagarajan Viswanathan, Visvesvaraya Pentakota