Patents by Inventor Srinivas Prasad Sista
Srinivas Prasad Sista has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240228874Abstract: A process for preparing a Mn+4 doped phosphor of formula I Ax[MFy]:Mn+4 I includes combining a first solution comprising a source of A and a second solution comprising H2MF6 in the presence of a source of Mn, to form the Mn+4 doped phosphor; wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7; and wherein a value of a Hammett acidity function of the first solution is at least ?0.9. Particles produced by the process may have a particle size distribution with a D50 particle size of less than 10 ?m.Type: ApplicationFiled: March 20, 2024Publication date: July 11, 2024Inventors: James Edward MURPHY, Srinivas Prasad SISTA, Samuel Joseph CAMARDELLO
-
Publication number: 20240218243Abstract: A process for preparing a Mn+4 doped phosphor of formula I Ax [MFy]:Mn+4 I includes combining a first solution comprising a source of A and a second solution comprising H2MF6 in the presence of a source of Mn, to form the Mn+4 doped phosphor; wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7; and wherein a value of a Hammett acidity function of the first solution is at least ?0.9. Particles produced by the process may have a particle size distribution with a D50 particle size of less than 10 ?m.Type: ApplicationFiled: March 11, 2024Publication date: July 4, 2024Inventors: James Edward MURPHY, Srinivas Prasad SISTA, Samuel Joseph CAMARDELLO
-
Patent number: 11952521Abstract: A process for preparing a Mn+4 doped phosphor of formula I Ax[MFy]:Mn+4??I includes combining a first solution comprising a source of A and a second solution comprising H2MF6 in the presence of a source of Mn, to form the Mn+4 doped phosphor; wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7; and wherein a value of a Hammett acidity function of the first solution is at least ?0.9. Particles produced by the process may have a particle size distribution with a D50 particle size of less than 10 ?m.Type: GrantFiled: November 2, 2021Date of Patent: April 9, 2024Assignee: CURRENT LIGHTING SOLUTIONS, LLCInventors: James Edward Murphy, Srinivas Prasad Sista, Samuel Joseph Camardello
-
Publication number: 20220056336Abstract: A process for preparing a Mn+4 doped phosphor of formula I Ax[MFy]:Mn+4?? I includes combining a first solution comprising a source of A and a second solution comprising H2MF6 in the presence of a source of Mn, to form the Mn+4 doped phosphor; wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7; and wherein a value of a Hammett acidity function of the first solution is at least ?0.9. Particles produced by the process may have a particle size distribution with a D50 particle size of less than 10 ?m.Type: ApplicationFiled: November 2, 2021Publication date: February 24, 2022Inventors: James Edward Murphy, Srinivas Prasad Sista, Samuel Joseph Camardello
-
Patent number: 11193059Abstract: A process for preparing a Mn+4 doped phosphor of formula I Ax[MFy]:Mn+4?? I includes combining a first solution comprising a source of A and a second solution comprising H2MF6 in the presence of a source of Mn, to form the Mn+4 doped phosphor; wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7; and wherein a value of a Hammett acidity function of the first solution is at least ?0.9. Particles produced by the process may have a particle size distribution with a D50 particle size of less than 10 ?m.Type: GrantFiled: December 2, 2017Date of Patent: December 7, 2021Assignee: CURRENT LIGHTING SOLUTIONS, LLCInventors: James Edward Murphy, Srinivas Prasad Sista, Samuel Joseph Camardello
-
Publication number: 20210130685Abstract: A process for preparing a Mn+4 doped phosphor of formula I Ax[MFy]:Mn+4?? I includes gradually adding a first solution to a second solution gradually discharging the product liquor from the reactor while volume of the product liquor in the reactor remains constant; wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7. The first solution includes a source of M and HF and the second solution includes a source of Mn to a reactor in the presence of a source of A.Type: ApplicationFiled: April 27, 2018Publication date: May 6, 2021Inventors: James Edward Murphy, Srinivas Prasad Sista
-
Patent number: 10954438Abstract: Synthesizing a color stable Mn4+ doped phosphor by contacting a gaseous fluorine-containing oxidizing agent with a precursor of: AaBbCcDdXx:Mn4+; AaiBbiCciDdXxYd:Mn4+; A13G2?m?nMnmMgnLi3F12Op; or AZF4:Mn4+. Where A is Li, Na, K, Rb, Cs, or a combination; B is Be, Mg, Ca, Sr, Ba, or a combination; C is Sc, Y, B, Al, Ga, In, Tl, or a combination; D is Ti, Zr, Hf, Rf, Si, Ge, Sn, Pb, or a combination; X is F or a combination of F and one of Br, Cl, and I; Y is O, or a combination of O and one of S and Se; A1 is Na or K, or a combination; G is Al, B, Sc, Fe, Cr, Ti, In, or a combination; Z is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, Y, In, or a combination.Type: GrantFiled: May 18, 2015Date of Patent: March 23, 2021Assignee: CURRENT LIGHTING SOLUTIONS, LLCInventors: Srinivas Prasad Sista, Anant Achyut Setlur
-
Patent number: 10793773Abstract: A process for preparing a Mn+4 doped phosphor of formula I includes gradually adding a first solution comprising a source of M and HF and a second solution comprising a source of Mn to a reactor, in the presence of a source of A and an anion selected from phosphate, sulfate, acetate, and combinations thereof, to form a product liquor comprising the Mn+4 doped phosphor. The process also includes gradually discharging the product liquor from the reactor while volume of the product liquor in the reactor remains constant. A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; and y is 5, 6 or 7.Type: GrantFiled: September 20, 2017Date of Patent: October 6, 2020Assignee: CURRENT LIGHTING SOLUTIONS, LLCInventors: Fangming Du, James Edward Murphy, Srinivas Prasad Sista, Clark David Nelson, Jenna Marie Baldesare
-
Patent number: 10230022Abstract: A lighting apparatus is presented. The lighting apparatus includes a semiconductor light source, a color stable Mn4+ doped phosphor and a quantum dot material, each of the color stable Mn4+ doped phosphor and the quantum dot material being radiationally coupled to the semiconductor light source. A percentage intensity loss of the color stable Mn4+ doped phosphor after exposure to a light flux of at least 20 w/cm2 at a temperature of at least 50 degrees Celsius for at least 21 hours is ?4%. A backlight device including the lighting apparatus is also presented.Type: GrantFiled: December 8, 2015Date of Patent: March 12, 2019Assignee: General Electric CompanyInventors: Anant Achyut Setlur, James Edward Murphy, Florencio Garcia, Srinivas Prasad Sista
-
Publication number: 20180265778Abstract: A process for preparing a Mn+4 doped phosphor of formula I includes gradually adding a first solution comprising a source of M and HF and a second solution comprising a source of Mn to a reactor, in the presence of a source of A and an anion selected from phosphate, sulfate, acetate, and combinations thereof, to form a product liquor comprising the Mn+4 doped phosphor. The process also includes gradually discharging the product liquor from the reactor while volume of the product liquor in the reactor remains constant. A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; and y is 5, 6 or 7.Type: ApplicationFiled: September 20, 2017Publication date: September 20, 2018Inventors: Fangming DU, James Edward MURPHY, Srinivas Prasad SISTA, Clark David NELSON, Jenna Marie BALDESARE
-
Publication number: 20180244989Abstract: A process for preparing a Mn+4 doped phosphor of formula I Ax[MFy]:Mn+4?? I includes gradually adding a first solution to a second solution gradually discharging the product liquor from the reactor while volume of the product liquor in the reactor remains constant; wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7. The first solution includes a source of M and HF and the second solution includes a source of Mn to a reactor in the presence of a source of A.Type: ApplicationFiled: April 27, 2018Publication date: August 30, 2018Inventors: James Edward Murphy, Srinivas Prasad Sista
-
Patent number: 10047286Abstract: A process for preparing a Mn+4 doped phosphor of formula I Ax[MFy|:Mn+4??I includes gradually adding a first solution to a second solution and periodically discharging the product liquor from the reactor while volume of the product liquor in the reactor remains constant; wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; and y is 5, 6 or 7. The first solution includes a source of M and HF and the second solution includes a source of Mn to a reactor in the presence of a source of A.Type: GrantFiled: November 24, 2015Date of Patent: August 14, 2018Assignee: GENERAL ELECTRIC COMPANYInventors: Fangming Du, William Winder Beers, William Erwin Cohen, Clark David Nelson, Jenna Marie Novak, John Matthew Root, James Edward Murphy, Srinivas Prasad Sista
-
Publication number: 20180163126Abstract: A process for preparing a Mn+4 doped phosphor of formula I Ax[MFy]:Mn+4?? I includes combining a first solution comprising a source of A and a second solution comprising H2MF6 in the presence of a source of Mn, to form the Mn+4 doped phosphor; wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7; and wherein a value of a Hammett acidity function of the first solution is at least ?0.9. Particles produced by the process may have a particle size distribution with a D50 particle size of less than 10 ?m.Type: ApplicationFiled: December 2, 2017Publication date: June 14, 2018Inventors: James Edward Murphy, Srinivas Prasad Sista, Samuel Joseph Camardello
-
Publication number: 20180155618Abstract: Synthesizing a color stable Mn4+ doped phosphor by contacting a gaseous fluorine-containing oxidizing agent with a precursor of: AaBbCcDdXx:Mn4+; AaiBbiCciDdXxYd:Mn4+; A13G2?m?nMnmMgnLi3F12Op; or AZF4:Mn4+. Where A is Li, Na, K, Rb, Cs, or a combination; B is Be, Mg, Ca, Sr, Ba, or a combination; C is Sc, Y, B, Al, Ga, In, Tl, or a combination; D is Ti, Zr, Hf, Rf, Si, Ge, Sn, Pb, or a combination; X is F or a combination of F and one of Br, Cl, and I; Y is O, or a combination of O and one of S and Se; A1 is Na or K, or a combination; G is Al, B, Sc, Fe, Cr, Ti, In, or a combination; Z is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, Y, In, or a combination.Type: ApplicationFiled: May 18, 2015Publication date: June 7, 2018Applicant: GENERAL ELECTRIC COMPANYInventors: Srinivas Prasad SISTA, Anant Achyut SETLUR
-
Patent number: 9982190Abstract: A process for preparing a Mn+4 doped phosphor of formula I Ax[MFy]:Mn+4??I includes gradually adding a first solution to a second solution gradually discharging the product liquor from the reactor while volume of the product liquor in the reactor remains constant; wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7. The first solution includes a source of M and HF and the second solution includes a source of Mn to a reactor in the presence of a source of A.Type: GrantFiled: November 24, 2015Date of Patent: May 29, 2018Assignee: GENERAL ELECTRIC COMPANYInventors: James Edward Murphy, Srinivas Prasad Sista
-
Patent number: 9938457Abstract: Methods for fabricating coated semiconductor elements are presented. The methods include the steps of combining a phosphor of formula I and a polymer binder to form a composite material, providing a semiconductor wafer including IniGajAlkN, wherein 0?i; 0?j; 0?k, and a sum of i, j and k is equal to 1, coating the composite material on a surface of the semiconductor wafer to form a coated semiconductor wafer, and dicing the coated semiconductor wafer using a cutting fluid apparatus to form one or more coated semiconductor elements. A cutting fluid of the cutting fluid apparatus includes a C1-C20 alcohol, a C1-C20 ketone, a C1-C20 acetate compound, acetic acid, oleic acid, carboxylic acid, a source of A, silicic acid, or a combination thereof.Type: GrantFiled: September 20, 2016Date of Patent: April 10, 2018Assignee: General Electric CompanyInventors: Digamber Gurudas Porob, James Edward Murphy, Florencio Garcia, Srinivas Prasad Sista, Anant Achyut Setlur, William Winder Beers, Fangming Du
-
Publication number: 20180079955Abstract: Methods for fabricating coated semiconductor elements are presented. The methods include the steps of combining a phosphor of formula I and a polymer binder to form a composite material, providing a semiconductor wafer including IniGajAlkN, wherein 0?i; 0?j; 0?k, and a sum of i, j and k is equal to 1, coating the composite material on a surface of the semiconductor wafer to form a coated semiconductor wafer, and dicing the coated semiconductor wafer using a cutting fluid apparatus to form one or more coated semiconductor elements. A cutting fluid of the cutting fluid apparatus includes a C1-C20 alcohol, a C1-C20 ketone, a C1-C20 acetate compound, acetic acid, oleic acid, carboxylic acid, a source of A, silicic acid, or a combination thereof.Type: ApplicationFiled: September 20, 2016Publication date: March 22, 2018Inventors: Digamber Gurudas Porob, James Edward Murphy, Florencio Garcia, Srinivas Prasad Sista, Anant Achyut Setlur, William Winder Beers, Fangming Du
-
Patent number: 9567516Abstract: A process for synthesizing a manganese (Mn4+) doped phosphor includes milling particles of the a phosphor precursor of formula I, and contacting the milled particles with a fluorine-containing oxidizing agent at an elevated temperature Ax[MFy]:Mn4+??(I) wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7.Type: GrantFiled: June 12, 2014Date of Patent: February 14, 2017Assignee: General Electric CompanyInventors: James Edward Murphy, Anant Achyut Setlur, Florencio Garcia, Srinivas Prasad Sista
-
Patent number: 9515283Abstract: Optoelectronic devices with enhanced internal outcoupling include a substrate, an anode, a cathode, an electroluminescent layer, and an electron transporting layer comprising inorganic nanoparticles dispersed in an organic matrix.Type: GrantFiled: August 30, 2012Date of Patent: December 6, 2016Assignee: BOE TECHNOLOGY GROUP CO., LTD.Inventors: Jie Jerry Liu, Jr., Srinivas Prasad Sista, Xiaolei Shi, Ri-An Zhao, Kelly Scott Chichak, Jeffrey Michael Youmans, Kevin Henry Janora, Larry Gene Turner
-
Publication number: 20160244663Abstract: A process for preparing a Mn+4 doped phosphor of formula I Ax[MFy]:Mn+4?? I includes gradually adding a first solution to a second solution gradually discharging the product liquor from the reactor while volume of the product liquor in the reactor remains constant; wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7. The first solution includes a source of M and HF and the second solution includes a source of Mn to a reactor in the presence of a source of A.Type: ApplicationFiled: November 24, 2015Publication date: August 25, 2016Inventors: James Edward Murphy, Srinivas Prasad Sista