Patents by Inventor Srinivas Vemury

Srinivas Vemury has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11724954
    Abstract: A method for forming an optical quality glass is provided. The method includes contacting silica soot particles with a basic additive, forming a silica soot compact, and removing the basic additive from the silica soot compact. A method of forming a cladding portion of an optical fiber preform is also provided.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: August 15, 2023
    Assignee: Corning Incorporated
    Inventors: Steven Bruce Dawes, Lisa Ann Hogue, Kenneth Edward Hrdina, Srinivas Vemury
  • Patent number: 11667558
    Abstract: A method of producing bi-modal particles includes the steps of igniting a first precursor gas using a primary burner thereby producing a first plurality of particles of a first size, fluidly transporting the first plurality of particles down a particle tube, igniting a second precursor gas using a secondary burner thereby producing a second plurality of particles of a second size, flowing the second plurality of particles into the first plurality of particles, and capturing the first and second plurality of particles.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: June 6, 2023
    Assignee: Corning Incorporated
    Inventors: Laura Beth Cook, Curtis Robert Fekety, Yunfeng Gu, Dale Robert Powers, Christopher Scott Thomas, Srinivas Vemury, Fei Xia, Chunfeng Zhou
  • Publication number: 20210355020
    Abstract: A method for forming an optical quality glass is provided. The method includes contacting silica soot particles with a basic additive, forming a silica soot compact, and removing the basic additive from the silica soot compact. A method of forming a cladding portion of an optical fiber preform is also provided.
    Type: Application
    Filed: August 2, 2021
    Publication date: November 18, 2021
    Inventors: Steven Bruce Dawes, Lisa Ann Hogue, Kenneth Edward Hrdina, Srinivas Vemury
  • Patent number: 11111172
    Abstract: A method for forming an optical quality glass is provided. The method includes contacting silica soot particles with a basic additive, forming a silica soot compact, and removing the basic additive from the silica soot compact. A method of forming a cladding portion of an optical fiber preform is also provided.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: September 7, 2021
    Assignee: Corning Incorporated
    Inventors: Steven Bruce Dawes, Lisa Ann Hogue, Kenneth Edward Hrdina, Srinivas Vemury
  • Patent number: 10829403
    Abstract: One embodiment of the disclosure relates to a method of cleaning silica-based soot or an article made of silica-based soot, the method comprising the step of treating silica-based soot or the article made of silica-based soot with at least one of the following compounds: (i) a mixture of CO and Cl2 in a carrier gas such that the total concentration of CO and Cl2 in the mixture is greater than 10% (by volume, in carrier gas) and the ratio of CO:Cl2 is between 0.25 and 5; (ii) CCl4 in a carrier gas, such that concentration CCl4 is greater than 1% (by volume, in carrier gas). Preferably, the treatment by CCl4 is performed at temperatures between 600° C., and 850° C. Preferably, the treatment with the CO and Cl mixture is performed at temperatures between 900° C. and 1200° C. The carrier gas may be, for example, He, Ar, N2, or the combination thereof.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: November 10, 2020
    Assignee: Corning Incorporated
    Inventors: Nicolas LeBlond, Pushkar Tandon, Srinivas Vemury
  • Publication number: 20200148579
    Abstract: A method of producing bi-modal particles includes the steps of igniting a first precursor gas using a primary burner thereby producing a first plurality of particles of a first size, fluidly transporting the first plurality of particles down a particle tube, igniting a second precursor gas using a secondary burner thereby producing a second plurality of particles of a second size, flowing the second plurality of particles into the first plurality of particles, and capturing the first and second plurality of particles.
    Type: Application
    Filed: January 13, 2020
    Publication date: May 14, 2020
    Inventors: Laura Beth Cook, Curtis Robert Fekety, Yunfeng Gu, Dale Robert Powers, Christopher Scott Thomas, Srinivas Vemury, Fei Xia, Chunfeng Zhou
  • Patent number: 10562804
    Abstract: A method of producing bi-modal particles includes the steps of igniting a first precursor gas using a primary burner thereby producing a first plurality of particles of a first size, fluidly transporting the first plurality of particles down a particle tube, igniting a second precursor gas using a secondary burner thereby producing a second plurality of particles of a second size, flowing the second plurality of particles into the first plurality of particles, and capturing the first and second plurality of particles.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: February 18, 2020
    Assignee: Corning Incorporated
    Inventors: Laura Beth Cook, Curtis Robert Fekety, Yunfeng Gu, Dale Robert Powers, Christopher Scott Thomas, Srinivas Vemury, Fei Xia, Chunfeng Zhou
  • Publication number: 20180148366
    Abstract: A method for forming an optical quality glass is provided. The method includes contacting silica soot particles with a basic additive, forming a silica soot compact, and removing the basic additive from the silica soot compact. A method of forming a cladding portion of an optical fiber preform is also provided.
    Type: Application
    Filed: November 28, 2017
    Publication date: May 31, 2018
    Inventors: Steven Bruce Dawes, Lisa Ann Hogue, Kenneth Edward Hrdina, Srinivas Vemury
  • Publication number: 20170267569
    Abstract: A method of producing bi-modal particles includes the steps of igniting a first precursor gas using a primary burner thereby producing a first plurality of particles of a first size, fluidly transporting the first plurality of particles down a particle tube, igniting a second precursor gas using a secondary burner thereby producing a second plurality of particles of a second size, flowing the second plurality of particles into the first plurality of particles, and capturing the first and second plurality of particles.
    Type: Application
    Filed: March 10, 2017
    Publication date: September 21, 2017
    Inventors: Laura Beth Cook, Curtis Robert Fekety, Yunfeng Gu, Dale Robert Powers, Christopher Scott Thomas, Srinivas Vemury, Fei Xia, Chunfeng Zhou
  • Patent number: 9199870
    Abstract: A high-surface quality glass sheet is formed using a roll-to-roll glass soot deposition and sintering process. The glass sheet formation involves providing glass soot particles, depositing a first fraction of the glass soot particles on a deposition surface to form a supported soot layer, electrostatically attracting and collecting a second fraction of the glass soot particles onto a surface of a charged plate, removing the soot layer from the deposition surface to form a soot sheet, and heating at least a portion of the soot sheet to sinter the glass soot particles to form a glass sheet.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: December 1, 2015
    Assignee: CORNING INCORPORATED
    Inventors: Daniel Warren Hawtof, Brenton Allen Noll, Srinivas Vemury
  • Publication number: 20130316136
    Abstract: A high-surface quality glass sheet is formed using a roll-to-roll glass soot deposition and sintering process. The glass sheet formation involves providing glass soot particles, depositing a first fraction of the glass soot particles on a deposition surface to form a supported soot layer, electrostatically attracting and collecting a second fraction of the glass soot particles onto a surface of a charged plate, removing the soot layer from the deposition surface to form a soot sheet, and heating at least a portion of the soot sheet to sinter the glass soot particles to form a glass sheet.
    Type: Application
    Filed: May 22, 2012
    Publication date: November 28, 2013
    Inventors: Daniel Warren Hawtof, Brenton Allen Noll, Srinivas Vemury
  • Publication number: 20120276291
    Abstract: Methods and apparatuses for vaporizing liquid precursor material for use in a vapor deposition process are disclosed. The method for vaporizing liquid precursor material includes introducing a flow of liquid precursor material into an expansion chamber and directing the flow of liquid precursor material towards a wall of the chamber. The wall of the chamber is heated to a temperature sufficient to vaporize a first portion of the flow of liquid precursor material while a second portion of the flow of liquid precursor material remains in a liquid state and a third portion of the liquid precursor material is formed into gel. The expansion chamber is continuously drained as the flow of liquid precursor material is introduced into the expansion chamber. The chamber is heated to a temperature to produce a sufficient amount of the second portion of the liquid precursor material to flush the gel from the chamber.
    Type: Application
    Filed: April 28, 2011
    Publication date: November 1, 2012
    Inventors: Chester D. Bird, Dale Robert Powers, Pushkar Tandon, Srinivas Vemury
  • Publication number: 20120202674
    Abstract: One embodiment of the disclosure relates to a method of cleaning silica-based soot or an article made of silica-based soot, the method comprising the step of treating silica-based soot or the article made of silica-based soot with at least one of the following compounds: (i) a mixture of CO and Cl2 in a carrier gas such that the total concentration of CO and Cl2 in the mixture is greater than 10% (by volume, in carrier gas) and the ratio of CO:Cl2 is between 0.25 and 5; (ii) CCl4 in a carrier gas, such that concentration CCl4 is greater than 1% (by volume, in carrier gas). Preferably, the treatment by CCl4 is performed at temperatures between 600° C., and 850° C. Preferably, the treatment with the CO and Cl mixture is performed at temperatures between 900° C. and 1200° C. The carrier gas may be, for example, He, Ar, N2, or the combination thereof.
    Type: Application
    Filed: August 9, 2011
    Publication date: August 9, 2012
    Inventors: Nicolas LeBlond, Pushkar Tandon, Srinivas Vemury
  • Publication number: 20040099013
    Abstract: An apparatus and method for fabricating an optical fiber, an optical fiber preform, and an optical fiber core rod are disclosed herein. In particular, the process of fabricating an optical fiber preform involves, during a modified chemical vapor deposition process, collapsing the substrate tube into an optical fiber preform, and compressing the optical fiber preform in the longitudinal direction. An optical fiber preform that is shorter, but larger in diameter is thus formed. The optical fiber preforms therefore can be stacked during the optical fiber fabrication process, which is useful in drawing longer optical fibers with comparable outer diameter and core diameter to that used as the industry standard.
    Type: Application
    Filed: November 25, 2002
    Publication date: May 27, 2004
    Applicant: Fitel USA Corp.
    Inventors: James W. Fleming, Srinivas Vemury
  • Patent number: 6481721
    Abstract: A method and apparatus for maintaining the pressure in an overclad tube at a reduced level despite axial movement of the tube during performance of an RIT overcladding operation. The overcladding tube is held by means of the lathe chuck, and a tubular extension of a rotary union member extends into the tube. The distal end of the extension has a sealing member replaceably mounted thereon which forms a seal with the interior wall of the tube. A vacuum source thus is enabled to connect to the interior of the overcladding tube through the rotary union, the extension tube, and the seal.
    Type: Grant
    Filed: July 15, 1999
    Date of Patent: November 19, 2002
    Assignee: Lucent Technologies Inc.
    Inventors: Peter Michael Mueller, Srinivas Vemury
  • Patent number: 6254940
    Abstract: The present invention related to methods of manufacturing oxide, nitride, carbide, and boride powders and other ceramic, organic, metallic, carbon and alloy powders and films and their mixtures having well-controlled size and crystallinity characteristics. This invention relates, more particularly, to a development in the synthesis of the ceramic, metallic, composite, carbon and alloy nanometer-sized particles with precisely controlled specific surface area, or primary particle size, crystallinity and composition. The product made using the process of the present invention and the use of that product are also claimed herein.
    Type: Grant
    Filed: May 26, 1999
    Date of Patent: July 3, 2001
    Assignee: University of Cincinnati
    Inventors: Sotiris E. Pratsinis, Srinivas Vemury
  • Patent number: 5861132
    Abstract: A gas phase process for the production of titanium dioxide powders having well-controlled crystalline and surface area characteristics is disclosed. In this process, which is preferably carried out in a laminar diffusion flame reactor, vapor phase TiCl.sub.4 and oxygen are mixed in a reaction area which is heated externally. The titanium dioxide powder formed is then collected. It is preferred that the heat source used be a hydrocarbon fueled (e.g., methane) flame. Optionally, a vapor phase dopant (such as SiCl.sub.4) may be added to the reaction mixture to desirably affect the physical properties of the titanium dioxide produced. In a particularly preferred embodiment, a corona electric field is positioned across the area where the combustion reaction takes place (i.e., the reaction area). High anatase, high surface area titanium dioxide powders made by this process are excellent photocatalysts. The products of this process and the use of those products as photocatalysts are also disclosed.
    Type: Grant
    Filed: September 4, 1997
    Date of Patent: January 19, 1999
    Assignee: University of Cincinnati
    Inventors: Sotiris Emmanuel Pratsinis, Srinivas Vemury, George P. Fotou, Andreas Gutsch
  • Patent number: 5698177
    Abstract: A gas phase process for the production of titanium dioxide powders having well-controlled crystalline and surface area characteristics is disclosed. In this process, which is preferably carried out in a laminar diffusion flame reactor, vapor phase TiCl.sub.4 and oxygen are mixed in a reaction area which is heated externally. The titanium dioxide powder formed is then collected. It is preferred that the heat source used be a hydrocarbon fueled (e.g., methane) flame. Optionally, a vapor phase dopant (such as SiCl.sub.4) may be added to the reaction mixture to desirably affect the physical properties of the titanium dioxide produced. In a particularly preferred embodiment, a corona electric field is positioned across the area where the combustion reaction takes place (i.e., the reaction area). High anatase, high surface area titanium dioxide powders made by this process are excellent photocatalysts. The products of this process and the use of those products as photocatalysts are also disclosed.
    Type: Grant
    Filed: June 8, 1995
    Date of Patent: December 16, 1997
    Assignees: University of Cincinnati, Universitat Karlsruhe
    Inventors: Sotiris Emmanuel Pratsinis, Srinivas Vemury, George P. Fotou, Andreas Gutsch