Patents by Inventor Srinivasan Chakravarthy

Srinivasan Chakravarthy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200211447
    Abstract: Methods and systems for operating a display panel in a multi-panel display system are presented. In one or more embodiments, a display panel may receive data and power; at a power supply, the display panel may generate a supply voltage from the received power for powering the display panel; and the display panel may forward the received data to an adjacent display panel if or when the power supply fails to generate the supply voltage.
    Type: Application
    Filed: September 9, 2019
    Publication date: July 2, 2020
    Inventors: Chris Mays, Srinivasan Chakravarthi
  • Patent number: 9048180
    Abstract: A low stress sacrificial cap layer 120 having a silicon oxide liner film 130, a low stress silicon film 140, and a silicon nitride film Alternatively, a low stress sacrificial cap layer 410 having a silicon oxide liner film 130 and a graded silicon nitride film 420. Also, methods 300, 500 for fabricating a transistor 20, 400 having a low stress sacrificial cap layer 120, 410.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: June 2, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: Jiong-Ping Lu, Periannan Chidambaram, Srinivasan Chakravarthi
  • Patent number: 8149152
    Abstract: A method and system for capacitor based digital to analog converter design layout for high speed analog to digital converter are provided. The method includes arranging a plurality of metal plates to form the capacitor. Each of the plurality of metal plates includes a driven plate and a common plate. The method also includes generating a plurality of interconnects in the common plate and extending the driven plate over the plurality of interconnects. Further, the method includes shielding the common plate by the driven plate. The system includes an analog to digital converter. The analog to digital converter also includes capacitor based digital to analog converter and digital logic for controlling digital operations in the analog to digital converter. The capacitor based digital to analog converter includes a plurality of capacitors, and a comparator for comparing the analog output from the digital to analog converter with a ground potential.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: April 3, 2012
    Assignee: Cosmic Circuits Private Limited
    Inventors: Venkatesh Teeka Srinivasa Shetty, Govind Kulkarni, Srinivasan Chakravarthy, Sumeet Mathur
  • Patent number: 8084312
    Abstract: A transistor is fabricated upon a semiconductor substrate, where the yield strength or elasticity of the substrate is enhanced or otherwise adapted. A strain inducing layer is formed over the transistor to apply a strain thereto to alter transistor operating characteristics, and more particularly to enhance the mobility of carriers within the transistor. Enhancing carrier mobility allows transistor dimensions to be reduced while also allowing the transistor to operate as desired. However, high strain and temperature associated with fabricating the transistor result in deleterious plastic deformation. The yield strength of the silicon substrate is therefore adapted by incorporating nitrogen into the substrate, and more particularly into source/drain extension regions and/or source/drain regions of the transistor. The nitrogen can be readily incorporated during transistor fabrication by adding it as part of source/drain extension region formation and/or source/drain region formation.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: December 27, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Srinivasan Chakravarthi, P R Chidambaram, Rajesh Khamankar, Haowen Bu, Douglas T. Grider
  • Publication number: 20110212584
    Abstract: A method (10) of forming a transistor (100) includes treating (12) at least some of a semiconductor substrate (102) with carbon and then forming (18) a gate structure (114) over the semiconductor substrate. A channel region (122) is thereby being defined within the semiconductor substrate (102) below the gate structure (114). Source and drain regions (140, 142) are then formed (26) within the semiconductor substrate (102) on opposing sides of the channel (122) with a phosphorus dopant.
    Type: Application
    Filed: February 3, 2009
    Publication date: September 1, 2011
    Applicant: Texas Instruments Incorporated
    Inventors: Srinivasan Chakravarthi, P. R. Chidambaram
  • Patent number: 7994073
    Abstract: A low stress sacrificial cap layer 120 having a silicon oxide liner film 130, a low stress silicon film 140, and a silicon nitride film. Alternatively, a low stress sacrificial cap layer 410 having a silicon oxide liner film 130 and a graded silicon nitride film 420. Also, methods 300, 500 for fabricating a transistor 20, 400 having a low stress sacrificial cap layer 120, 410.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: August 9, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Jiong-Ping Lu, Periannan Chidambaram, Srinivasan Chakravarthi
  • Patent number: 7902576
    Abstract: A method (10) of forming a transistor (100) includes treating (12) at least some of a semiconductor substrate (102) with carbon and then forming (18) a gate structure (114) over the semiconductor substrate. A channel region (122) is thereby being defined within the semiconductor substrate (102) below the gate structure (114). Source and drain regions (140, 142) are then formed (26) within the semiconductor substrate (102) on opposing sides of the channel (122) with a phosphorus dopant.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: March 8, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Srinivasan Chakravarthi, P.R. Chidambaram
  • Publication number: 20100253563
    Abstract: A method and system for capacitor based digital to analog converter design layout for high speed analog to digital converter are provided. The method includes arranging a plurality of metal plates to form the capacitor. Each of the plurality of metal plates includes a driven plate and a common plate. The method also includes generating a plurality of interconnects in the common plate and extending the driven plate over the plurality of interconnects. Further, the method includes shielding the common plate by the driven plate. The system includes an analog to digital converter. The analog to digital converter also includes capacitor based digital to analog converter and digital logic for controlling digital operations in the analog to digital converter. The capacitor based digital to analog converter includes a plurality of capacitors, and a comparator for comparing the analog output from the digital to analog converter with a ground potential.
    Type: Application
    Filed: March 23, 2010
    Publication date: October 7, 2010
    Applicant: Cosmic Circuits Private Limited
    Inventors: Venkatesh Teeka Srinivasa SHETTY, Govind Kulkarni, Srinivasan Chakravarthy, Sumeet Mathur
  • Patent number: 7795122
    Abstract: A method is disclosed for implanting and activating antimony as a dopant in a semiconductor substrate. A method is also disclosed for implanting and activating antimony to form a source/drain extension region in the formation of a transistor, in such a manner as to achieve high activation and avoid deactivation via subsequent exposure to high temperatures. This technique facilitates the formation of very thin source/drain regions that exhibit reduced sheet resistance while also suppressing short channel effects. Enhancements to these techniques are also suggested for more precise implantation of antimony to create a shallower source/drain extension, and to ensure formation of the source/drain extension region to underlap the gate. Also disclosed are transistors and other semiconductor components that include doped regions comprising activated antimony, such as those formed according to the disclosed methods.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: September 14, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Haowen Bu, Amitabh Jain, Srinivasan Chakravarthi, Shashank S. Ekbote
  • Patent number: 7786518
    Abstract: Semiconductor devices and fabrication methods are provided in which disposable gates are formed over isolation regions. Sidewall structures, including disposable sidewall structures, are formed on sidewalls of the disposable gates. An epitaxially grown silicon germanium is formed in recesses defined by the sidewalls. The process provides a compressive strained channel in the device without faceting of the epitaxially grown silicon germanium.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: August 31, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Srinivasan Chakravarthi, Periannan Chidambaram
  • Publication number: 20100120215
    Abstract: A transistor is fabricated upon a semiconductor substrate, where the yield strength or elasticity of the substrate is enhanced or otherwise adapted. A strain inducing layer is formed over the transistor to apply a strain thereto to alter transistor operating characteristics, and more particularly to enhance the mobility of carriers within the transistor. Enhancing carrier mobility allows transistor dimensions to be reduced while also allowing the transistor to operate as desired. However, high strain and temperature associated with fabricating the transistor result in deleterious plastic deformation. The yield strength of the silicon substrate is therefore adapted by incorporating nitrogen into the substrate, and more particularly into source/drain extension regions and/or source/drain regions of the transistor. The nitrogen can be readily incorporated during transistor fabrication by adding it as part of source/drain extension region formation and/or source/drain region formation.
    Type: Application
    Filed: January 15, 2010
    Publication date: May 13, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Srinivasan CHAKRAVARTHI, PR CHIDAMBARAM, Rajesh KHAMANKAR, Haowen BU, Douglas T. GRIDER
  • Patent number: 7670892
    Abstract: A transistor is fabricated upon a semiconductor substrate, where the yield strength or elasticity of the substrate is enhanced or otherwise adapted. A strain inducing layer is formed over the transistor to apply a strain thereto to alter transistor operating characteristics, and more particularly to enhance the mobility of carriers within the transistor. Enhancing carrier mobility allows transistor dimensions to be reduced while also allowing the transistor to operate as desired. However, high strain and temperature associated with fabricating the transistor result in deleterious plastic deformation. The yield strength of the silicon substrate is therefore adapted by incorporating nitrogen into the substrate, and more particularly into source/drain extension regions and/or source/drain regions of the transistor. The nitrogen can be readily incorporated during transistor fabrication by adding it as part of source/drain extension region formation and/or source/drain region formation.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: March 2, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Srinivasan Chakravarthi, Pr Chidambaram, Rajesh Khamankar, Haowen Bu, Douglas T. Grider
  • Publication number: 20100038727
    Abstract: A method for forming carbon-doped epitaxial SiGe of a PMOS transistor by providing a semiconductor substrate having a PMOS transistor gate stack and recess etched active regions. The method includes forming carbon-doped epitaxial SiGe within the recess etched active regions. A PMOS transistor includes a semiconductor substrate, a PMOS transistor gate stack, and source/drain extensions. The PMOS transistor also includes carbon-doped epitaxial SiGe source/drain regions.
    Type: Application
    Filed: October 21, 2009
    Publication date: February 18, 2010
    Applicant: Texas Instruments Incorporated
    Inventors: Srinivasan Chakravarthi, Periannan Chidambaram, Johan Weijtmans
  • Publication number: 20090308073
    Abstract: The present invention relates to a system for carrying out oxygen-enhanced combustion in an industrial process wherein the industrial process, an oxygen supply system or a source of oxygen, a heat recovery network, and an alternative Rankine cycle system based on a working fluid other than steam are integrated to achieve improved throughput and efficiency, and a method for oxygen-enhanced combustion in an industrial process using said system. Examples of industrial processes include cement production, steel reheat applications, glass production, aluminum and copper melting, as well as any industrial process that uses process heater, furnaces where combustion is carried out using an oxidant stream with oxygen content higher’ than that in ambient air and up to 100%.
    Type: Application
    Filed: July 25, 2007
    Publication date: December 17, 2009
    Inventors: Dante Patrick Bonaquist, Minish Mahendra Shah, Vijayaraghavan Srinivasan Chakravarthy, Monica Zanfir, Raymond Francis Drnevich, Stefan Laux
  • Patent number: 7572716
    Abstract: A method is disclosed for doping a target area of a semiconductor substrate, such as a source or drain region of a transistor, with an electronically active dopant (such as an N-type dopant used to create active areas in NMOS devices, or a P-type dopant used to create active areas in PMOS devices) having a well-controlled placement profile and strong activation. The method comprises placing a carbon-containing diffusion suppressant in the target area at approximately 50% of the concentration of the dopant, and activating the dopant by an approximately 1,040 degree Celsius thermal anneal. In many cases, a thermal anneal at such a high temperature induces excessive diffusion of the dopant out of the target area, but this relative concentration of carbon produces a heretofore unexpected reduction in dopant diffusion during such a high-temperature thermal anneal.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: August 11, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Haowen Bu, Shashank S. Ekbote, Borna Obradovic, Srinivasan Chakravarthi
  • Publication number: 20090179236
    Abstract: A PMOS transistor and a method for fabricating a PMOS transistor. The method may include providing a semiconductor wafer having a PMOS transistor gate stack, source/drain extension regions, and active regions. The method may also include forming epi sidewalls, performing a ex-situ recess etch, and performing an in-situ recess etch. The ex-situ recess etch and the in-situ recess etch form recessed active regions. The PMOS transistor is formed by a method using ex-situ and in-situ etch and has epitaxial SiGe regions with a greatest width at the surface of the semiconductor wafer.
    Type: Application
    Filed: March 19, 2009
    Publication date: July 16, 2009
    Applicant: Texas Instruments Incorporated
    Inventors: Srinivasan Chakravarthi, Periannan Chidambaram, Johan Weijtmans
  • Publication number: 20090166755
    Abstract: Semiconductor devices and fabrication methods are provided in which disposable gates are formed over isolation regions. Sidewall structures, including disposable sidewall structures, are formed on sidewalls of the disposable gates. An epitaxially grown silicon germanium is formed in recesses defined by the sidewalls. The process provides a compressive strained channel in the device without faceting of the epitaxially grown silicon germanium.
    Type: Application
    Filed: September 17, 2008
    Publication date: July 2, 2009
    Applicant: Texas Instruments Incorporated
    Inventors: Srinivasan Chakravarthi, Periannan Chidambaram
  • Publication number: 20090170270
    Abstract: Semiconductor devices and fabrication methods are provided in which disposable gates are formed over isolation regions. Sidewall structures, including disposable sidewall structures, are formed on sidewalls of the disposable gates. An epitaxially grown silicon germanium is formed in recesses defined by the sidewalls. The process provides a compressive strained channel in the device without faceting of the epitaxially grown silicon germanium.
    Type: Application
    Filed: September 17, 2008
    Publication date: July 2, 2009
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Srinivasan Chakravarthi, Periannan Chidambaram
  • Publication number: 20090170256
    Abstract: A method of forming a transistor comprising forming a gate structure over an n-type semiconductor body and forming recesses substantially aligned to the gate structure in the semiconductor body. Silicon germanium is then epitaxially grown in the recesses and a silicon cap layer is formed over the silicon germanium. Further introduction of impurities into the silicon germanium to increase the melting point thereof and implanting p-type source/drain regions in the semiconductor body is included in the method. The method concludes with performing a high temperature thermal treatment.
    Type: Application
    Filed: September 8, 2008
    Publication date: July 2, 2009
    Applicant: TEXAS INSTRUMENTS INCOPORATED
    Inventors: Srinivasan Chakravarthi, Haowen Bu, Periannan Chidambaram
  • Patent number: 7553717
    Abstract: A PMOS transistor and a method for fabricating a PMOS transistor. The method may include providing a semiconductor wafer having a PMOS transistor gate stack, source/drain extension regions, and active regions. The method may also include forming epi sidewalls, performing a ex-situ recess etch, and performing an in-situ recess etch. The ex-situ recess etch and the in-situ recess etch form recessed active regions. The PMOS transistor is formed by a method using ex-situ and in-situ etch and has epitaxial SiGe regions with a greatest width at the surface of the semiconductor wafer.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: June 30, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Srinivasan Chakravarthi, Periannan Chidambaram, Johan Weijtmans