Patents by Inventor Sriram Iyer

Sriram Iyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10290895
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Set forth herein are methods for preparing novel structures, including dense thin free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: May 14, 2019
    Assignee: QuantumScape Corporation
    Inventors: Tim Holme, Niall Donnelly, Sriram Iyer, Adrian Winoto, Mohit Singh, Will Hudson, Dong Hee Anna Choi, Oleh Karpenko
  • Publication number: 20190103630
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Application
    Filed: August 13, 2018
    Publication date: April 4, 2019
    Inventors: Dong Hee Anna CHOI, Niall DONNELLY, Tim HOLME, Will HUDSON, Sriram IYER, Oleh KARPENKO, Mohit SINGH, Adrian WINOTO
  • Publication number: 20190020059
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Application
    Filed: August 30, 2018
    Publication date: January 17, 2019
    Inventors: Dong Hee Anna CHOI, Niall DONNELLY, Tim HOLME, Will HUDSON, Sriram IYER, Oleh KARPENKO, Mohit SINGH, Adrian WINOTO
  • Publication number: 20180375149
    Abstract: The instant disclosure sets forth multiphase lithium-stuffed garnet electrolytes having secondary phase inclusions, wherein these secondary phase inclusions are material(s) which is/are not a cubic phase lithium-stuffed garnet but which is/are entrapped or enclosed within a lithium-stuffed garnet. When the secondary phase inclusions described herein are included in a lithium-stuffed garnet at 30-0.1 volume %, the inclusions stabilize the multiphase matrix and allow for improved sintering of the lithium-stuffed garnet. The electrolytes described herein, which include lithium-stuffed garnet with secondary phase inclusions, have an improved sinterability and density compared to phase pure cubic lithium-stuffed garnet having the formula Li7La3Zr2O12.
    Type: Application
    Filed: June 23, 2017
    Publication date: December 27, 2018
    Inventors: Larry BECK, Cheng-Chieh CHAO, Lei CHENG, Niall DONNELLY, Will GARDNER, Tim HOLME, Will HUDSON, Sriram IYER, Oleh KARPENKO, Yang LI, Gengfu XU
  • Publication number: 20180342764
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Application
    Filed: May 22, 2018
    Publication date: November 29, 2018
    Inventors: Tim Holme, Niall Donnelly, Sriram Iyer, Adrian Winoto, Mohit Singh, Will Hudson, Dong Hee Anna Choi, Oleh Karpenko
  • Publication number: 20180316711
    Abstract: Implementations described herein disclose a system for providing personalized threat protection for users of computer applications. An implementation of a method disclosed herein includes analyzing usage pattern of an application by a client to determine various application functionalities used by the client, identifying security threats related to the various application functionalities used by the client, and changing the configuration settings of the application for the client based on the plurality of security threats.
    Type: Application
    Filed: April 27, 2017
    Publication date: November 1, 2018
    Inventors: Varagur Karthikeyan Sriram IYER, Thomas P. GALLAGHER, Matthew Bryan JEFFRIES
  • Patent number: 10103405
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: October 16, 2018
    Assignee: QuantumScape Corporation
    Inventors: Dong Hee Anna Choi, Niall Donnelly, Tim Holme, Will Hudson, Sriram Iyer, Oleh Karpenko, Mohit Singh, Adrian Winoto
  • Publication number: 20180191028
    Abstract: Set forth herein are pellets, thin films, and monoliths of lithium-stuffed garnet electrolytes having engineered surfaces. These engineered surfaces have a list of advantageous properties including, but not limited to, low surface area resistance, high Li+ ion conductivity, low tendency for lithium dendrites to form within or thereupon when the electrolytes are used in an electrochemical cell. Other advantages include voltage stability and long cycle life when used in electrochemical cells as a separator or a membrane between the positive and negative electrodes. Also set forth herein are methods of making these electrolytes including, but not limited to, methods of annealing these electrolytes under controlled atmosphere conditions. Set forth herein, additionally, are methods of using these electrolytes in electrochemical cells and devices. The instant disclosure further includes electrochemical cells which incorporate the lithium-stuffed garnet electrolytes set forth herein.
    Type: Application
    Filed: February 28, 2018
    Publication date: July 5, 2018
    Inventors: Arnold ALLENIC, Cheng-Chieh CHAO, Lei CHENG, Niall DONNELLY, Will GARDNER, Tim HOLME, Sriram IYER, Shuang LI
  • Publication number: 20180183820
    Abstract: A threat protection system provides for detecting links in a document and analyzing whether one of the detected links is a malicious link that may direct a user of the document to a malicious universal resource locator (URL). In one implementation of the described technology, when a user selects a link in a document, a link activation module calls a threat protection client module that performs a reputation check for the link. If the selected link is malicious, the threat protection client module sends a URL of a warning page to the link activation module.
    Type: Application
    Filed: April 28, 2017
    Publication date: June 28, 2018
    Inventors: Varagur Karthikeyan Sriram IYER, Willson Kulandai Raj DAVID, Vinayak GOYAL, Matthew Bryan JEFFRIES
  • Publication number: 20180143955
    Abstract: Providing automatic updates to transmitted copies of an electronic document is disclosed herein. In response to the first user such as the author/first user saving the electronic document, a copy of the electronic document is uploaded to a shared location and a reference to the copy of the electronic document uploaded to the shared location is stored in metadata of the electronic document. The first user can then transmit a copy of the electronic document with a link to the reference in the metadata to a second user. Then, if the first user subsequently revises the electronic document, the revised electronic document is uploaded to the shared location. When the second user then opens the copy of the electronic document, a copy of the most recently revised electronic document is retrieved from the shared location.
    Type: Application
    Filed: December 16, 2016
    Publication date: May 24, 2018
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Matthew Bryan Jeffries, Varagur Karthikeyan Sriram Iyer, Rorke Haining, Michael Paer
  • Patent number: 9970711
    Abstract: Setter plates are fabricated from Li-stuffed garnet materials having the same, or substantially similar, compositions as a garnet Li-stuffed solid electrolyte. The Li-stuffed garnet setter plates, set forth herein, reduce the evaporation of Li during a sintering treatment step and/or reduce the loss of Li caused by diffusion out of the sintering electrolyte. Li-stuffed garnet setter plates, set forth herein, maintain compositional control over the solid electrolyte during sintering when, upon heating, lithium is prone, to diffuse out of the solid electrolyte.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: May 15, 2018
    Assignee: QuantumScape Corporation
    Inventors: Sriram Iyer, Tim Holme, Niall Donnelly
  • Patent number: 9966630
    Abstract: Set forth herein are pellets, thin films, and monoliths of lithium-stuffed garnet electrolytes having engineered surfaces. These engineered surfaces have a list of advantageous properties including, but not limited to, low surface area resistance, high Li+ ion conductivity, low tendency for lithium dendrites to form within or thereupon when the electrolytes are used in an electrochemical cell. Other advantages include voltage stability and long cycle life when used in electrochemical cells as a separator or a membrane between the positive and negative electrodes. Also set forth herein are methods of making these electrolytes including, but not limited to, methods of annealing these electrolytes under controlled atmosphere conditions. Set forth herein, additionally, are methods of using these electrolytes in electrochemical cells and devices. The instant disclosure further includes electrochemical cells which incorporate the lithium-stuffed garnet electrolytes set forth herein.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: May 8, 2018
    Assignee: QuantumScape Corporation
    Inventors: Lei Cheng, Sriram Iyer, Will Gardner, Tim Holme, Shuang Li, Cheng-chieh Chao, Niall Donnelly, Arnold Allenic
  • Publication number: 20180094858
    Abstract: Setter plates are fabricated from Li-stuffed garnet materials having the same, or substantially similar, compositions as a garnet Li-stuffed solid electrolyte. The Li-stuffed garnet setter plates, set forth herein, reduce the evaporation of Li during a sintering treatment step and/or reduce the loss of Li caused by diffusion out of the sintering electrolyte. Li-stuffed garnet setter plates, set forth herein, maintain compositional control over the solid electrolyte during sintering when, upon heating, lithium is prone to diffuse out of the solid electrolyte.
    Type: Application
    Filed: October 18, 2017
    Publication date: April 5, 2018
    Inventors: Sriram IYER, Tim HOLME, Niall DONNELLY
  • Publication number: 20180076480
    Abstract: Disclosed herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also disclosed herein are lithium-stuffed garnet thin films having fine grains therein. Also disclosed herein are methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also disclosed herein are methods for preparing dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device. Also disclosed herein are sintering techniques, e.g.
    Type: Application
    Filed: June 23, 2017
    Publication date: March 15, 2018
    Inventors: Dong Hee Anna CHOI, Niall DONNELLY, Tim HOLME, Will HUDSON, Sriram IYER, Oleh KARPENKO, Kian KERMAN, Mohit SINGH, Adrian WINOTO
  • Publication number: 20180069263
    Abstract: Disclosed herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also disclosed herein are lithium-stuffed garnet thin films having fine grains therein. Also disclosed herein are methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also disclosed herein are methods for preparing dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device. Also disclosed herein are sintering techniques, e.g.
    Type: Application
    Filed: October 11, 2017
    Publication date: March 8, 2018
    Inventors: Tim HOLME, Niall DONNELLY, Sriram IYER, Adrian WINOTO, Mohit SINGH, Will HUDSON, Dong Hee Anna CHOI, Oleh KARPENKO, Kian KERMAN
  • Publication number: 20180045465
    Abstract: Setter plates are fabricated from Li-stuffed garnet materials having the same, or substantially similar, compositions as a garnet Li-stuffed solid electrolyte. The Li-stuffed garnet setter plates, set forth herein, reduce the evaporation of Li during a sintering treatment step and/or reduce the loss of Li caused by diffusion out of the sintering electrolyte. Li-stuffed garnet setter plates, set forth herein, maintain compositional control over the solid electrolyte during sintering when, upon heating, lithium is prone to diffuse out of the solid electrolyte.
    Type: Application
    Filed: October 26, 2017
    Publication date: February 15, 2018
    Inventors: Sriram IYER, Tim HOLME, Niall DONNELLY
  • Publication number: 20170346135
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Application
    Filed: April 6, 2017
    Publication date: November 30, 2017
    Inventors: Dong Hee Anna CHOI, Niall DONNELLY, Tim HOLME, Will HUDSON, Sriram IYER, Oleh KARPENKO, Mohit SINGH, Adrian WINOTO
  • Patent number: 9806372
    Abstract: Disclosed herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also disclosed herein are lithium-stuffed garnet thin films having fine grains therein. Also disclosed herein are methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also disclosed herein are methods for preparing dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device. Also disclosed herein are sintering techniques, e.g.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: October 31, 2017
    Assignee: QuantumScape Corporation
    Inventors: Tim Holme, Niall Donnelly, Sriram Iyer, Adrian Winoto, Mohit Singh, Will Hudson, Dong Hee Anna Choi, Oleh Karpenko, Kian Kerman
  • Publication number: 20170263976
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Application
    Filed: April 17, 2017
    Publication date: September 14, 2017
    Inventors: Dong Hee Anna CHOI, Niall DONNELLY, Tim HOLME, Will HUDSON, Sriram IYER, Oleh KARPENKO, Mohit SINGH, Adrian WINOTO
  • Publication number: 20170214084
    Abstract: Set forth herein are pellets, thin films, and monoliths of lithium-stuffed garnet electrolytes having engineered surfaces. These engineered surfaces have a list of advantageous properties including, but not limited to, low surface area resistance, high Li+ ion conductivity, low tendency for lithium dendrites to form within or thereupon when the electrolytes are used in an electrochemical cell. Other advantages include voltage stability and long cycle life when used in electrochemical cells as a separator or a membrane between the positive and negative electrodes. Also set forth herein are methods of making these electrolytes including, but not limited to, methods of annealing these electrolytes under controlled atmosphere conditions. Set forth herein, additionally, are methods of using these electrolytes in electrochemical cells and devices. The instant disclosure further includes electrochemical cells which incorporate the lithium-stuffed garnet electrolytes set forth herein.
    Type: Application
    Filed: January 27, 2016
    Publication date: July 27, 2017
    Inventors: Lei CHENG, Sriram IYER, Will GARDNER, Tim HOLME, Shuang LI, Cheng-chieh CHAO, Niall DONNELLY, Arnold ALLENIC