Patents by Inventor Sriram S. Popuri

Sriram S. Popuri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9890717
    Abstract: A system and method are provided for estimating the operating speed of a turbocharger. A first pressure value corresponds to pressure at or near the air inlet of the compressor, and a second pressure value corresponds to pressure at or near the air outlet of the compressor. A temperature value corresponds to a temperature at or near the air inlet of the compressor, and a flow rate value corresponds to a flow rate of air entering the air inlet of the compressor. The operating speed of the turbocharger is estimated as a function of the first pressure value, the second pressure value, the temperature value and the flow rate value.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: February 13, 2018
    Assignee: CUMMINS INC.
    Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri
  • Patent number: 9528432
    Abstract: A system and method are provided for controlling an air handling system for an internal combustion engine including a turbocharger having a variable geometry turbine fluidly coupled to an exhaust manifold of the engine and a compressor fluidly coupled to an intake manifold of the engine, and an electric motor coupled to a rotatable shaft connected between the compressor and the variable geometry turbine. A target torque required to drive the compressor to achieve target compressor operating parameters is determined, a maximum available torque that can be supplied by the variable geometry turbine in response to a target exhaust gas flow through the variable geometry turbine is determined, and the electric motor is enabled to supply supplemental torque to the rotatable shaft if the target torque is greater than the maximum available torque.
    Type: Grant
    Filed: September 25, 2011
    Date of Patent: December 27, 2016
    Assignee: Cummins, Inc.
    Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri, Timothy R. Frazier, Martin T. Books, Divakar Rajamohan, Indranil Brahma
  • Patent number: 9453468
    Abstract: A system and method are provided for estimating the operating speed of a turbocharger. A first pressure value corresponds to pressure at or near the air inlet of the compressor, and a second pressure value corresponds to pressure at or near the air outlet of the compressor. A temperature value corresponds to a temperature at or near the air inlet of the compressor, and a flow rate value corresponds to a flow rate of air entering the air inlet of the compressor. The operating speed of the turbocharger is estimated as a function of the first pressure value, the second pressure value, the temperature value and the flow rate value.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: September 27, 2016
    Assignee: Cummins Inc.
    Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri
  • Patent number: 9181905
    Abstract: A system controlling an air handling system for an internal combustion engine. An EGR valve in-line with an EGR passageway fluidly coupled between exhaust and intake manifolds of the engine is controllable between fully closed open positions to control a flow rate of exhaust gas through the EGR passageway. A control circuit determines a pump enable value as a function of at least one of a target engine speed and a total fueling target, determines a maximum achievable flow rate of recirculated exhaust gas through the EGR passageway with the EGR valve in the fully open position, and activates an electric gas pump to increase the flow rate of exhaust gas through the EGR passageway if the pump enable value exceeds a threshold pump enable value and a target flow rate of recirculated exhaust gas through the EGR passageway is less than the maximum achievable flow rate.
    Type: Grant
    Filed: September 25, 2011
    Date of Patent: November 10, 2015
    Assignee: Cummins Inc.
    Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri, Timothy R. Frazier, Martin T. Books, Divakar Rajamohan, Indranil Brahma
  • Publication number: 20150057909
    Abstract: A system and method are provided for estimating the operating speed of a turbocharger. A first pressure value corresponds to pressure at or near the air inlet of the compressor, and a second pressure value corresponds to pressure at or near the air outlet of the compressor. A temperature value corresponds to a temperature at or near the air inlet of the compressor, and a flow rate value corresponds to a flow rate of air entering the air inlet of the compressor. The operating speed of the turbocharger is estimated as a function of the first pressure value, the second pressure value, the temperature value and the flow rate value.
    Type: Application
    Filed: November 10, 2014
    Publication date: February 26, 2015
    Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri
  • Patent number: 8887693
    Abstract: A system and method are provided for estimating the flow rate of air entering an air inlet of a turbocharger compressor. A first pressure value corresponds to pressure at or near the air inlet of the compressor, and a second pressure value corresponds to pressure at or near the air outlet of the compressor. A temperature value corresponds to a temperature at or near the air inlet of the compressor, and a speed value corresponds to an operating speed of the turbocharger. The flow rate of air entering the air inlet of the turbocharger compressor is illustratively estimated as a function of the first pressure value, the second pressure value, the temperature value and the speed value.
    Type: Grant
    Filed: September 25, 2011
    Date of Patent: November 18, 2014
    Assignee: Cummins, Inc.
    Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri
  • Patent number: 8892332
    Abstract: A system and method are provided for estimating the operating speed of a turbocharger. A first pressure value corresponds to pressure at or near the air inlet of the compressor, and a second pressure value corresponds to pressure at or near the air outlet of the compressor. A temperature value corresponds to a temperature at or near the air inlet of the compressor, and a flow rate value corresponds to a flow rate of air entering the air inlet of the compressor. The operating speed of the turbocharger is estimated as a function of the first pressure value, the second pressure value, the temperature value and the flow rate value.
    Type: Grant
    Filed: September 25, 2011
    Date of Patent: November 18, 2014
    Assignee: Cummins, Inc.
    Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri
  • Patent number: 8783030
    Abstract: A system and method are provided for controlling an air handling system for an internal combustion engine including a turbocharger having a variable geometry turbine and a compressor having a fresh air inlet fluidly coupled to ambient and to an air outlet of an electric air pump. An air pump enable value as determined a function of target engine speed and total fuel target values and an air flow target is determined as a function of a target fresh air flow value. Operation of the electric air pump is activated to supply supplemental air flow to the fresh air inlet of the compressor if the air pump enable value is greater than a threshold air pump enable value and the air flow target does not exceed a maximum flow value.
    Type: Grant
    Filed: September 25, 2011
    Date of Patent: July 22, 2014
    Assignee: Cummins Inc.
    Inventors: John N Chi, John M Mulloy, Sriram S Popuri, Timothy R Frazier, Martin T Books, Divakar Rajamohan, Indranil Brahma
  • Patent number: 8567192
    Abstract: A system is provided for controlling an air handling system for an internal combustion engine. A dual-stage turbocharger includes a high-pressure compressor and variable geometry turbine combination fluidly coupled to a low-pressure compressor and variable geometry turbine combination. A control circuit includes a memory having instructions stored therein that are executable by the control circuit to determine a target low-pressure compressor ratio, a target high-pressure compressor ratio, a target high-pressure compressor inlet temperature and a target high-pressure compressor inlet pressure as a function of a target outlet pressure of the high-pressure compressor and a temperature, a pressure and a target flow rate of air entering the air inlet of the low-pressure compressor, and to control the geometries of the low-pressure and high-pressure turbines as a function of the target low-pressure compressor ratio the target high-pressure compressor ratio respectively.
    Type: Grant
    Filed: September 25, 2011
    Date of Patent: October 29, 2013
    Assignee: Cummins, Inc.
    Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri, Timothy R. Frazier, Martin T. Books, Divakar Rajamohan, Indranil Brahma, Xi Wei
  • Publication number: 20130080024
    Abstract: A system and method are provided for estimating the operating speed of a turbocharger. A first pressure value corresponds to pressure at or near the air inlet of the compressor, and a second pressure value corresponds to pressure at or near the air outlet of the compressor. A temperature value corresponds to a temperature at or near the air inlet of the compressor, and a flow rate value corresponds to a flow rate of air entering the air inlet of the compressor. The operating speed of the turbocharger is estimated as a function of the first pressure value, the second pressure value, the temperature value and the flow rate value.
    Type: Application
    Filed: September 25, 2011
    Publication date: March 28, 2013
    Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri
  • Publication number: 20130074492
    Abstract: A system is provided for controlling an air handling system for an internal combustion engine. A dual-stage turbocharger includes a high-pressure compressor and variable geometry turbine combination fluidly coupled to a low-pressure compressor and variable geometry turbine combination. A control circuit includes a memory having instructions stored therein that are executable by the control circuit to determine a target low-pressure compressor ratio, a target high-pressure compressor ratio, a target high-pressure compressor inlet temperature and a target high-pressure compressor inlet pressure as a function of a target outlet pressure of the high-pressure compressor and a temperature, a pressure and a target flow rate of air entering the air inlet of the low-pressure compressor, and to control the geometries of the low-pressure and high-pressure turbines as a function of the target low-pressure compressor ratio the target high-pressure compressor ratio respectively.
    Type: Application
    Filed: September 25, 2011
    Publication date: March 28, 2013
    Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri, Timothy R. Frazier, Martin T. Books, Divakar Rajamohan, Indranil Brahma, Xi Wei
  • Publication number: 20130080025
    Abstract: A system and method are provided for estimating the flow rate of air entering an air inlet of a turbocharger compressor. A first pressure value corresponds to pressure at or near the air inlet of the compressor, and a second pressure value corresponds to pressure at or near the air outlet of the compressor. A temperature value corresponds to a temperature at or near the air inlet of the compressor, and a speed value corresponds to an operating speed of the turbocharger. The flow rate of air entering the air inlet of the turbocharger compressor is illustratively estimated as a function of the first pressure value, the second pressure value, the temperature value and the speed value.
    Type: Application
    Filed: September 25, 2011
    Publication date: March 28, 2013
    Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri
  • Publication number: 20130074496
    Abstract: A system and method are provided for controlling an air handling system for an internal combustion engine including a turbocharger having a variable geometry turbine and a compressor having a fresh air inlet fluidly coupled to ambient and to an air outlet of an electric air pump. An air pump enable value as determined a function of target engine speed and total fuel target values and an air flow target is determined as a function of a target fresh air flow value. Operation of the electric air pump is activated to supply supplemental air flow to the fresh air inlet of the compressor if the air pump enable value is greater than a threshold air pump enable value and the air flow target does not exceed a maximum flow value.
    Type: Application
    Filed: September 25, 2011
    Publication date: March 28, 2013
    Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri, Timothy R. Frazier, Martin T. Books, Divakar Rajamohan, Indranil Brahma
  • Publication number: 20130074495
    Abstract: A system and method are provided for controlling an air handling system for an internal combustion engine including a turbocharger having a variable geometry turbine fluidly coupled to an exhaust manifold of the engine and a compressor fluidly coupled to an intake manifold of the engine, and an electric motor coupled to a rotatable shaft connected between the compressor and the variable geometry turbine. A target torque required to drive the compressor to achieve target compressor operating parameters is determined, a maximum available torque that can be supplied by the variable geometry turbine in response to a target exhaust gas flow through the variable geometry turbine is determined, and the electric motor is enabled to supply supplemental torque to the rotatable shaft if the target torque is greater than the maximum available torque.
    Type: Application
    Filed: September 25, 2011
    Publication date: March 28, 2013
    Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri, Timothy R. Frazier, Martin T. Books, Divakar Rajamohan, Indranil Brahma
  • Publication number: 20130080034
    Abstract: A system controlling an air handling system for an internal combustion engine. An EGR valve in-line with an EGR passageway fluidly coupled between exhaust and intake manifolds of the engine is controllable between fully closed open positions to control a flow rate of exhaust gas through the EGR passageway. A control circuit determines a pump enable value as a function of at least one of a target engine speed and a total fueling target, determines a maximum achievable flow rate of recirculated exhaust gas through the EGR passageway with the EGR valve in the fully open position, and activates an electric gas pump to increase the flow rate of exhaust gas through the EGR passageway if the pump enable value exceeds a threshold pump enable value and a target flow rate of recirculated exhaust gas through the EGR passageway is less than the maximum achievable flow rate.
    Type: Application
    Filed: September 25, 2011
    Publication date: March 28, 2013
    Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri, Timothy R. Frazier, Martin T. Books, Divakar Rajamohan, Indranil Brahma
  • Publication number: 20120216529
    Abstract: An internal combustion engine including a two-stage turbocharger configuration is described. Located between the turbines of the two-stage turbocharger may be an oxidation catalyst and a passive NOx adsorber or an oxidation catalyst and an SCR device. An exhaust path extending from an engine body of the internal combustion engine to the second turbine of the two-stage turbocharger configuration may also include one or more hydrocarbon sources or one or more ammonia sources. A bypass valve arrangement may permit decreased flow through the first stage of the two-stage turbocharger arrangement as well as one or more of the elements positioned between the turbines of the two-stage turbocharger.
    Type: Application
    Filed: February 28, 2012
    Publication date: August 30, 2012
    Applicant: Cummins Intellectual Property, Inc.
    Inventors: Alok A. Joshi, Sriram S. Popuri, Timothy R. Frazier, Neal W. Currier, Aleksey Yezerets
  • Patent number: 7628063
    Abstract: An OBD system that diagnoses on board the condition of NOx adsorber catalysts in diesel engines and that relies on existing mass-produced exhaust gas oxygen sensor, also known as lambda sensor, technology, and the following established phenomena. In a reducing environment, typical exhaust gas oxygen (lambda) sensors have different sensitivities to various reductants, with sensitivity decreasing in this order: H2>CO>short-chain hydrocarbons>long-chain hydrocarbons. In the process of regeneration of the NOx adsorber catalyst, the original reductant may evolve into a different reductant species, e.g., via reactions such as a water-gas shift (WGS), a reforming, a partial oxidation, etc. This leads to a difference in exhaust gas oxygen sensor readings between the inlet to the catalyst and outlet from the catalyst. It has been observed in diesel engine testing that the ability of the NOx adsorber catalyst to perform such a reductant evolution is correlative to the catalyst's NOx reduction capability.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: December 8, 2009
    Assignee: Cummins Inc.
    Inventors: Aleksey Yezerets, Sriram S. Popuri, Neal W. Currier, William Shelbourne Epling, Paul James Millington, David Scott Lafyatis
  • Publication number: 20080168824
    Abstract: An OBD system that diagnoses on board the condition of NOx adsorber catalysts in diesel engines and that relies on existing mass-produced exhaust gas oxygen sensor, also known as lambda sensor, technology, and the following established phenomena. In a reducing environment, typical exhaust gas oxygen (lambda) sensors have different sensitivities to various reductants, with sensitivity decreasing in this order: H2>CO>short-chain hydrocarbons>long-chain hydrocarbons. In the process of regeneration of the NOx adsorber catalyst, the original reductant may evolve into a different reductant species, e.g., via reactions such as a water-gas shift (WGS), a reforming, a partial oxidation, etc. This leads to a difference in exhaust gas oxygen sensor readings between the inlet to the catalyst and outlet from the catalyst. It has been observed in diesel engine testing that the ability of the NOx adsorber catalyst to perform such a reductant evolution is correlative to the catalyst's NOx reduction capability.
    Type: Application
    Filed: January 10, 2008
    Publication date: July 17, 2008
    Inventors: Aleksey Yezerets, Sriram S. Popuri, Neal W. Currier, William Shelbourne Epling, Paul James Millington, David Scott Lafyatis
  • Publication number: 20040116276
    Abstract: An exhaust emission control regeneration system regenerates a particulate filter by combusting trapped particulate and producing a combustion product from such combustion, and uses the combustion product to assist regeneration of a downstream catalyst, such as CO assisting regeneration of a downstream NOX adsorber, located in sufficiently close proximity to a diesel particulate filter.
    Type: Application
    Filed: February 12, 2002
    Publication date: June 17, 2004
    Inventors: Aleksey Yezerets, Neal W. Currier, Matthew J. DeWitt, Sriram S. Popuri, George G. Muntean, Michael J. Cunningham, Z. Gerald Liu, Barry M. Verdegan, Robert K. Miller, Jer-Sheng Jason Chen, Howard L. Fang, Herbert Dacosta, Cary D. Bremigan, William C. Haberkamp