Patents by Inventor Srobona SEN

Srobona SEN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12297367
    Abstract: Embodiments described herein relate to flat optical devices and encapsulation materials for flat optical devices. One or more embodiments include a substrate having a first arrangement of a first plurality of pillars formed thereon. The first arrangement of the first plurality of pillars includes pillars having a height h and a lateral distance d. The first arrangement of the first plurality of pillars includes a gap g corresponding to a distance between adjacent pillars of the first plurality of pillars. An aspect ratio of the gap g to the height h is between about 1:1 and about 1:20. A first adhesion-promoting material is disposed over the first arrangement of the first plurality of pillars. A first encapsulation layer is disposed over the first adhesion-promoting material. The first encapsulation layer fills the gap g between adjacent pillars of the first plurality of pillars. The first encapsulation layer includes a fluoropolymer.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: May 13, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Srobona Sen, Tapashree Roy, Prerna Sonthalia Goradia, Robert Jan Visser
  • Publication number: 20250093780
    Abstract: Embodiments of the present disclosure generally relate to optical devices, and more specifically, protective coatings for optical devices and methods for preparing protective coatings on optical devices and other devices. In one or more embodiments, a method for protecting a photoresist on a workpiece is provided and includes depositing a photoresist layer on a first surface of a substrate, and depositing a protective coating on the photoresist layer disposed on the first surface, wherein the protective coating contains a water-soluble polymeric material. Thereafter, the method includes exposing a second surface of the substrate to one or more fabrication processes, where the first surface is covered by the photoresist layer and the protective coating, and the second surface is uncovered. Thereafter, the method further includes removing the protective coating by at least partially dissolving the water-soluble polymeric material with a removal solution containing water or an aqueous solution.
    Type: Application
    Filed: September 13, 2024
    Publication date: March 20, 2025
    Inventors: Amit Kumar ROY, Srobona SEN, Kankona S. ROY, Xiaopei DENG, Gopi Chandran Ramachandran, Robert VISSER
  • Patent number: 12216243
    Abstract: Embodiments described herein relate to flat optical devices and methods of forming flat optical devices. One embodiment includes a substrate having a first arrangement of a first plurality of pillars formed thereon. The first arrangement of the first plurality of pillars includes pillars having a height h and a lateral distance d, and a gap g corresponding to a distance between adjacent pillars of the first plurality of pillars. An aspect ratio of the gap g to the height h is between about 1:1 and about 1:20. A first encapsulation layer is disposed over the first arrangement of the first plurality of pillars. The first encapsulation layer has a refractive index of about 1.0 to about 1.5. The first encapsulation layer, the substrate, and each of the pillars of the first arrangement define a first space therebetween. The first space has a refractive index of about 1.0 to about 1.5.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: February 4, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Ludovic Godet, Tapashree Roy, Prerna Sonthalia Goradia, Srobona Sen, Robert Jan Visser, Nitin Deepak, Tapash Chakraborty
  • Patent number: 12006442
    Abstract: A system, formulation, and method for additive manufacturing of a polishing layer of a polishing pad. The formulation includes a urethane acrylate oligomer based on a difunctional polyol or difunctional polythiol. The techniques includes selecting the difunctional polyol or the difunctional polythiol to affect a property of the polishing layer. The formulation also includes a monomer and a photoinitiator. The viscosity of the formulation is applicable for 3D printing of the polishing layer.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: June 11, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Atul Bhaskar Chaudhari, Sivapackia Ganapathiappan, Srobona Sen
  • Publication number: 20240145242
    Abstract: Implementations described herein generally relate to processes for the fabrication of semiconductor devices in which a blocking layer of molecules is used to achieve selective epitaxial deposition. In one implementation, a method of processing a mixed-surface substrate comprising an exposed dielectric material and an exposed silicon-based material is provided. The method comprises depositing a blocking layer on the exposed dielectric material and epitaxially and selectively depositing a silicon-containing material layer on the exposed silicon-based material at a temperature of 400 degrees Celsius or greater. The method further involves removing the blocking layer from the dielectric material.
    Type: Application
    Filed: October 27, 2023
    Publication date: May 2, 2024
    Inventors: Geetika BAJAJ, Srobona SEN, Xuebin LI, Joe MARGETIS, Provas PAL, Gopi Chandran RAMACHANDRAN
  • Publication number: 20220064474
    Abstract: Embodiments described herein relate to flat optical devices and encapsulation materials for flat optical devices. One or more embodiments include a substrate having a first arrangement of a first plurality of pillars formed thereon. The first arrangement of the first plurality of pillars includes pillars having a height h and a lateral distance d. The first arrangement of the first plurality of pillars includes a gap g corresponding to a distance between adjacent pillars of the first plurality of pillars. An aspect ratio of the gap g to the height h is between about 1:1 and about 1:20. A first adhesion-promoting material is disposed over the first arrangement of the first plurality of pillars. A first encapsulation layer is disposed over the first adhesion-promoting material. The first encapsulation layer fills the gap g between adjacent pillars of the first plurality of pillars. The first encapsulation layer includes a fluoropolymer.
    Type: Application
    Filed: August 27, 2020
    Publication date: March 3, 2022
    Inventors: Srobona SEN, Tapashree Roy, Prerna Sonthalia Goradia, Robert Jan Visser
  • Publication number: 20210071017
    Abstract: A system, formulation, and method for additive manufacturing of a polishing layer of a polishing pad. The formulation includes a urethane acrylate oligomer based on a difunctional polyol or difunctional polythiol. The techniques includes selecting the difunctional polyol or the difunctional polythiol to affect a property of the polishing layer. The formulation also includes a monomer and a photoinitiator. The viscosity of the formulation is applicable for 3D printing of the polishing layer.
    Type: Application
    Filed: November 12, 2019
    Publication date: March 11, 2021
    Inventors: Atul Bhaskar Chaudhari, Sivapackia Ganapathiappan, Srobona Sen
  • Publication number: 20210069860
    Abstract: A system, formulation, and method for additive manufacturing of a polishing layer of a polishing pad. The formulation includes a urethane acrylate oligomer based on a difunctional polyol or difunctional polythiol. The techniques includes selecting the difunctional polyol or the difunctional polythiol to affect a property of the polishing layer. The formulation also includes a monomer and a photoinitiator. The viscosity of the formulation is applicable for 3D printing of the polishing layer.
    Type: Application
    Filed: November 12, 2019
    Publication date: March 11, 2021
    Inventors: Atul Bhaskar Chaudhari, Sivapackia Ganapathiappan, Srobona Sen
  • Publication number: 20200400990
    Abstract: Embodiments described herein relate to flat optical devices and methods of forming flat optical devices. One embodiment includes a substrate having a first arrangement of a first plurality of pillars formed thereon. The first arrangement of the first plurality of pillars includes pillars having a height h and a lateral distance d, and a gap g corresponding to a distance between adjacent pillars of the first plurality of pillars. An aspect ratio of the gap g to the height h is between about 1:1 and about 1:20. A first encapsulation layer is disposed over the first arrangement of the first plurality of pillars. The first encapsulation layer has a refractive index of about 1.0 to about 1.5. The first encapsulation layer, the substrate, and each of the pillars of the first arrangement define a first space therebetween. The first space has a refractive index of about 1.0 to about 1.5.
    Type: Application
    Filed: June 18, 2020
    Publication date: December 24, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Ludovic GODET, Tapashree ROY, Prerna Sonthalia GORADIA, Srobona SEN, Robert Jan VISSER, Nitin DEEPAK, Tapash CHAKRABORTY