Patents by Inventor Stafford W. Sheehan

Stafford W. Sheehan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240124792
    Abstract: Provided herein are systems and methods for converting CO2 and a reduction gas such as H2 or a hydrocarbon to mixtures of paraffins and aromatics suitable for use as aviation fuel.
    Type: Application
    Filed: November 20, 2023
    Publication date: April 18, 2024
    Inventors: Lubo Zhou, Chi Chen, Qiyuan Wu, Stafford W. Sheehan, Namal de Silva, Mahluli Moyo, Jihad Dakka, David DeVilliers
  • Patent number: 11958041
    Abstract: The present disclosure provides catalysts, reactor systems, and methods for the conversion of carbon dioxide and hydrogen gas into paraffins, olefins, and other hydrocarbon products. Methods for utilization of mixtures of carbon dioxide, carbon monoxide, and hydrogen gas in a manner distinct from legacy Fischer-Tropsch reactors to produce hydrocarbons is also included.
    Type: Grant
    Filed: August 8, 2023
    Date of Patent: April 16, 2024
    Assignee: Air Company Holdings, Inc.
    Inventors: Stafford W. Sheehan, Chi Chen, Mahlet Garedew-Ballard, Neva Luthria, Mihir R. Shah, Qiyuan Wu
  • Patent number: 11919841
    Abstract: Methods for producing alcohols by deriving carbon dioxide from air or another dilute source, and supplying water, which is converted to hydrogen and oxygen, with subsequent conversion of the carbon dioxide and hydrogen into alcohols is disclosed. The method includes, but is not limited to including, a direct air capture system carbon dioxide, a water electrolysis unit powered by electricity, a hydrogenation reactor to convert carbon dioxide and hydrogen gases into alcohols, and a distillation system to separate alcohols or a single constituent alcohol from other hydrogenation products. Optionally, these methods may include systems capture water from air, if water or hydrogen is not available on-site, and the distillation system may use propylene glycol as an extraction solvent. This process can be used for on-site production of feedstock alcohols such as ethanol at high purity, and many other applications.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: March 5, 2024
    Assignee: Air Company Holdings, Inc.
    Inventor: Stafford W. Sheehan
  • Publication number: 20240043464
    Abstract: Provided herein are methods and catalysts for the production of hexoses, pentoses, tetroses, trioses, ketoses, heptoses, aldehydes, glycolaldehyde, and glyceraldehyde from carbon dioxide using a system that does not rely on biological production methods. The process first converts carbon dioxide into an aldehyde intermediate, which is secondly used as feedstock to produce larger aldehydes and sugars in a formose reaction. The resulting process is a useful CO2 utilization method for space exploration and in-situ resource utilization, with potential application for terrestrial production of low-carbon chemicals.
    Type: Application
    Filed: December 16, 2021
    Publication date: February 8, 2024
    Inventors: Stafford W. SHEEHAN, Chi CHEN
  • Publication number: 20230390744
    Abstract: The present disclosure provides catalysts, reactor systems, and methods for the conversion of carbon dioxide and hydrogen gas into paraffins, olefins, and other hydrocarbon products. Methods for utilization of mixtures of carbon dioxide, carbon monoxide, and hydrogen gas in a manner distinct from legacy Fischer-Tropsch reactors to produce hydrocarbons is also included.
    Type: Application
    Filed: August 8, 2023
    Publication date: December 7, 2023
    Inventors: Stafford W. Sheehan, Chi Chen, Mahlet Garedew-Ballard, Neva Luthria, Mihir R. Shah, Qiyuan Wu
  • Publication number: 20230348347
    Abstract: Methods for utilizing carbon dioxide to produce multi-carbon products are disclosed. The systems and methods of the present disclosure involve: reducing CO2 to produce a first product mixture comprising an alcohol product mixture comprising one or more alcohols and a paraffin product mixture comprising one or more paraffins; dehydrating the alcohol product mixture to form an olefin product mixture comprising one or more olefins; oligomerizing the olefin product mixture to form a higher olefin product mixture comprising unsaturated paraffins and optionally aromatics; and reducing the higher olefin product mixture to form a higher hydrocarbon product mixture comprising unsaturated paraffins and optionally aromatics. Catalyst materials and reaction conditions for individual steps are disclosed to optimize yield for ethanol or jet fuel range hydrocarbons.
    Type: Application
    Filed: July 10, 2023
    Publication date: November 2, 2023
    Inventors: Stafford W. Sheehan, Chi Chen, Nicholas J. Steinke
  • Publication number: 20230286888
    Abstract: Provided herein are metal alloy components which are useful for the removal of impurities from alcohol-containing mixtures. Also provided herein are distillation apparatuses comprising the described metal alloy components, and methods for using said components and apparatuses for the removal of impurities from alcohol-containing mixtures.
    Type: Application
    Filed: August 5, 2021
    Publication date: September 14, 2023
    Inventors: Stafford W. Sheehan, Michael Trainor
  • Publication number: 20230256423
    Abstract: The present disclosure provides catalysts, comprising: copper; zinc; one or more first elements selected from iron, nickel, or cobalt; aluminum; oxygen; optionally, one or more second elements selected from a Group V, VI, VII, VIII, IX, X, and XI metal (e.g., manganese, silver, niobium, zirconium, molybdenum, ruthenium, or palladium); and optionally, one or more Group IA metals, and wherein the first element is present in an amount of about 1 to about 40 wt. % (e.g., about 1 to about 10 wt. %, about 25 to about 40 wt. %, about 30 to about 40 wt. %, or about 35 to about 40 wt. %) of the total amount of the copper, zinc, first element, the optional second element, and the optional Group IA metal, and methods of using said catalyst in the production of ethanol and higher alcohols from carbon dioxide.
    Type: Application
    Filed: June 24, 2021
    Publication date: August 17, 2023
    Inventors: Stafford W. Sheehan, Chi Chen
  • Publication number: 20230234037
    Abstract: The present invention provides a catalyst, comprising molybdenum; one or more first elements selected from a Group V, VI, VII, VIII, IX, X, and XI metal (e.g., silver, cobalt, nickel, copper, rhodium, ruthenium, iridium, palladium, niobium, and manganese); one or more second elements selected from sulfur, carbon, oxygen, phosphorus, nitrogen, and selenium; and optionally, one or more Group IA metals, wherein the molybdenum is present in an amount of 10-50 wt. % of the total amount of the one or more first elements, the molybdenum, the one or more second elements, and the Group IA metal, and methods of using said catalyst in the production of ethanol from carbon dioxide.
    Type: Application
    Filed: May 5, 2021
    Publication date: July 27, 2023
    Inventors: Stafford W. Sheehan, Chi Chen
  • Publication number: 20230060945
    Abstract: Methods for producing alcohols by deriving carbon dioxide from air or another dilute source, and supplying water, which is converted to hydrogen and oxygen, with subsequent conversion of the carbon dioxide and hydrogen into alcohols is disclosed. The method includes, but is not limited to including, a direct air capture system carbon dioxide, a water electrolysis unit powered by electricity, a hydrogenation reactor to convert carbon dioxide and hydrogen gases into alcohols, and a distillation system to separate alcohols or a single constituent alcohol from other hydrogenation products. Optionally, these methods may include systems capture water from air, if water or hydrogen is not available on-site, and the distillation system may use propylene glycol as an extraction solvent. This process can be used for on-site production of feedstock alcohols such as ethanol at high purity, and many other applications.
    Type: Application
    Filed: July 27, 2022
    Publication date: March 2, 2023
    Inventor: Stafford W. Sheehan
  • Publication number: 20220390769
    Abstract: Sleep-aiding eyewear that prevents light which inhibits melatonin production from reaching the eye is described. The eyewear that is the object of the present disclosure has improved visibility over other methods of cutting off melatonin-inhibiting wavelengths of light, which enables the user to perform tasks, such as reading and typing, uninhibited. This is achieved in some embodiments using a Bragg grating comprising multiple layers of alternating reflective index material as a surface coating on the lens. This may be combined with lens-tinting, or antireflective coatings, in the eyewear. Furthermore, transition lenses which block melatonin-shifting light when there is a suitable external stimulus, such as blue light from a light emitting diode, are described. The presently described filters are also useful for electronic displays and functional light-transmitting materials.
    Type: Application
    Filed: November 10, 2020
    Publication date: December 8, 2022
    Inventors: Stafford W. Sheehan, Zachary R. Stenmark, Jordan D. Stenmark
  • Patent number: 11434186
    Abstract: Methods for producing alcohols by deriving carbon dioxide from air or another dilute source, and supplying water, which is converted to hydrogen and oxygen, with subsequent conversion of the carbon dioxide and hydrogen into alcohols is disclosed. The method includes, but is not limited to including, a direct air capture system carbon dioxide, a water electrolysis unit powered by electricity, a hydrogenation reactor to convert carbon dioxide and hydrogen gases into alcohols, and a distillation system to separate alcohols or a single constituent alcohol from other hydrogenation products. Optionally, these methods may include systems capture water from air, if water or hydrogen is not available on-site, and the distillation system may use propylene glycol as an extraction solvent. This process can be used for on-site production of feedstock alcohols such as ethanol at high purity, and many other applications.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: September 6, 2022
    Assignee: Air Company Holdings, Inc.
    Inventor: Stafford W. Sheehan
  • Publication number: 20220228275
    Abstract: Electrochemical devices, such as membrane electrode assemblies and electrochemical reactors, are described herein, as well as and methods for the conversion of reactants such as carbon dioxide to value-added products such as ethanol. In certain aspects, the membrane electrode assemblies are configured to allow for distributed pressure along the cathodic side of a membrane electrode assembly is described. The pressure vessel acts as a cathode chamber, both for the feed of reactant carbon dioxide as well as collection of products. The designs described herein improves the safety of high pressure electrochemical carbon dioxide reduction and allows for varied pressures to be used, in order to optimize reaction conditions. Configurations optimized for producing preferred products, such as ethanol, are also described.
    Type: Application
    Filed: April 1, 2022
    Publication date: July 21, 2022
    Inventor: Stafford W. Sheehan
  • Publication number: 20210147326
    Abstract: Methods for producing alcohols by deriving carbon dioxide from air or another dilute source, and supplying water, which is converted to hydrogen and oxygen, with subsequent conversion of the carbon dioxide and hydrogen into alcohols is disclosed. The method includes, but is not limited to including, a direct air capture system carbon dioxide, a water electrolysis unit powered by electricity, a hydrogenation reactor to convert carbon dioxide and hydrogen gases into alcohols, and a distillation system to separate alcohols or a single constituent alcohol from other hydrogenation products. Optionally, these methods may include systems capture water from air, if water or hydrogen is not available on-site, and the distillation system may use propylene glycol as an extraction solvent. This process can be used for on-site production of feedstock alcohols such as ethanol at high purity, and many other applications.
    Type: Application
    Filed: June 29, 2018
    Publication date: May 20, 2021
    Inventor: Stafford W. Sheehan
  • Patent number: 10711021
    Abstract: Catalysts prepared from abundant, cost effective metals, such as cobalt, nickel, chromium, manganese, iron, and copper, and containing one or more neutrally charged ligands (e.g., monodentate, bidentate, and/or polydentate ligands) and methods of making and using thereof are described herein. Exemplary ligands include, but are not limited to, phosphine ligands, nitrogen-based ligands, sulfur-based ligands, and/or arsenic-based ligands. In some embodiments, the catalyst is a cobalt-based catalyst or a nickel-based catalyst. The catalysts described herein are stable and active at neutral pH and in a wide range of buffers that are both weak and strong proton acceptors. While its activity is slightly lower than state of the art cobalt-based water oxidation catalysts under some conditions, it is capable of sustaining electrolysis at high applied potentials without a significant degradation in catalytic current. This enhanced robustness gives it an advantage in industrial and large-scale water electrolysis schemes.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: July 14, 2020
    Assignee: YALE UNIVERSITY
    Inventors: Aaron J. Bloomfield, Stafford W. Sheehan, Samuel L. Collom, Robert H. Crabtree, Paul T. Anastas
  • Patent number: 10081650
    Abstract: Catalysts prepared from abundant, cost effective metals, such as cobalt, nickel, chromium, manganese, iron, and copper, and containing one or more neutrally charged ligands (e.g., monodentate, bidentate, and/or polydentate ligands) and methods of making and using thereof are described herein. Exemplary ligands include, but are not limited to, phosphine ligands, nitrogen-based ligands, sulfur-based ligands, and/or arsenic-based ligands. In some embodiments, the catalyst is a cobalt-based catalyst or a nickel-based catalyst. The catalysts described herein are stable and active at neutral pH and in a wide range of buffers that are both weak and strong proton acceptors. While its activity is slightly lower than state of the art cobalt-based water oxidation catalysts under some conditions, it is capable of sustaining electrolysis at high applied potentials without a significant degradation in catalytic current. This enhanced robustness gives it an advantage in industrial and large-scale water electrolysis schemes.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: September 25, 2018
    Assignee: Yale University
    Inventors: Aaron J. Bloomfield, Stafford W. Sheehan, Samuel L. Collom, Robert H. Crabtree, Paul T. Anastas
  • Publication number: 20160152648
    Abstract: Catalysts prepared from abundant, cost effective metals, such as cobalt, nickel, chromium, manganese, iron, and copper, and containing one or more neutrally charged ligands (e.g., monodentate, bidentate, and/or polydentate ligands) and methods of making and using thereof are described herein. Exemplary ligands include, but are not limited to, phosphine ligands, nitrogen-based ligands, sulfur-based ligands, and/or arsenic-based ligands. In some embodiments, the catalyst is a cobalt-based catalyst or a nickel-based catalyst. The catalysts described herein are stable and active at neutral pH and in a wide range of buffers that are both weak and strong proton acceptors. While its activity is slightly lower than state of the art cobalt-based water oxidation catalysts under some conditions, it is capable of sustaining electrolysis at high applied potentials without a significant degradation in catalytic current. This enhanced robustness gives it an advantage in industrial and large-scale water electrolysis schemes.
    Type: Application
    Filed: November 24, 2015
    Publication date: June 2, 2016
    Inventors: Aaron J. Bloomfield, Stafford W. Sheehan, Samuel L. Collom, Robert H. Crabtree, Paul T. Anastas
  • Publication number: 20150065339
    Abstract: Catalysts prepared from abundant, cost effective metals, such as cobalt, nickel, chromium, manganese, iron, and copper, and containing one or more neutrally charged ligands (e.g., monodentate, bidentate, and/or polydentate ligands) and methods of making and using thereof are described herein. Exemplary ligands include, but are not limited to, phosphine ligands, nitrogen-based ligands, sulfur-based ligands, and/or arsenic-based ligands. In some embodiments, the catalyst is a cobalt-based catalyst or a nickel-based catalyst. The catalysts described herein are stable and active at neutral pH and in a wide range of buffers that are both weak and strong proton acceptors. While its activity is slightly lower than state of the art cobalt-based water oxidation catalysts under some conditions, it is capable of sustaining electrolysis at high applied potentials without a significant degradation in catalytic current. This enhanced robustness gives it an advantage in industrial and large-scale water electrolysis schemes.
    Type: Application
    Filed: July 2, 2014
    Publication date: March 5, 2015
    Inventors: Aaron J. Bloomfield, Stafford W. Sheehan, Samuel L. Collom, Robert H. Crabtree, Paul T. Anastas