Patents by Inventor Stanislaus S. Wong

Stanislaus S. Wong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9440290
    Abstract: A bimetallic nanowire synthesis method is provided. The method includes adding first and second solutions into a vessel containing a porous template with the first solution containing first and second reagents added on one side of the porous template and the second solution added on an opposite side of the porous template. The first reagent includes a first salt of at least one of a transition metal, an actinide metal and a lanthanide metal. The second reagent includes a second salt of at least one of a transition metal, an actinide metal and a lanthanide metal. The second solution contains a reducing agent.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: September 13, 2016
    Assignee: THE RESEARCH FOUNDATION FOR THE STATE UNIVERISITY OF NEW YORK
    Inventors: Stanislaus S. Wong, Christopher Koenigsmann
  • Patent number: 9365432
    Abstract: The invention relates to nanomaterials and assemblies including, a micrometer-scale spherical aggregate comprising: a plurality of one-dimensional nanostructures comprising titanium and oxygen, wherein the one-dimensional nanostructures radiate from a hollow central core thereby forming a spherical aggregate.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: June 14, 2016
    Assignee: THE RESEARCH FOUNDATION OF STATE UNIVERSITY OF NEW YORK
    Inventors: Stanislaus S. Wong, Yuanbing Mao
  • Publication number: 20150239748
    Abstract: The invention relates to nanomaterials and assemblies including, a micrometer-scale spherical aggregate comprising: a plurality of one-dimensional nanostructures comprising titanium and oxygen, wherein the one-dimensional nanostructures radiate from a hollow central core thereby forming a spherical aggregate.
    Type: Application
    Filed: April 29, 2013
    Publication date: August 27, 2015
    Applicant: The Research Foundation for The State University of New York
    Inventors: Stanislaus S. Wong, Yuanbing Mao
  • Publication number: 20140290436
    Abstract: A bimetallic nanowire synthesis method is provided. The method includes adding first and second solutions into a vessel containing a porous template with the first solution containing first and second reagents added on one side of the porous template and the second solution added on an opposite side of the porous template. The first reagent includes a first salt of at least one of a transition metal, an actinide metal and a lanthanide metal. The second reagent includes a second salt of at least one of a transition metal, an actinide metal and a lanthanide metal. The second solution contains a reducing agent.
    Type: Application
    Filed: March 26, 2013
    Publication date: October 2, 2014
    Applicant: The Research Foundation for The State University of New York
    Inventors: Stanislaus S. WONG, Christopher KOENIGSMANN
  • Patent number: 8440162
    Abstract: The invention relates to nanomaterials and assemblies including, a micrometer-scale spherical aggregate comprising: a plurality of one-dimensional nanostructures comprising titanium and oxygen, wherein the one-dimensional nanostructures radiate from a hollow central core thereby forming a spherical aggregate.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: May 14, 2013
    Assignee: The Research Foundation of State University of New York
    Inventors: Stanislaus S. Wong, Yuanbing Mao
  • Publication number: 20130102458
    Abstract: The invention relates to nanomaterials and assemblies including, a micrometer-scale spherical aggregate comprising: a plurality of one-dimensional nanostructures comprising titanium and oxygen, wherein the one-dimensional nanostructures radiate from a hollow central core thereby forming a spherical aggregate.
    Type: Application
    Filed: December 18, 2007
    Publication date: April 25, 2013
    Inventors: Stanislaus S. Wong, Yuanbing Mao
  • Patent number: 8318126
    Abstract: The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: November 27, 2012
    Inventors: Stanislaus S. Wong, Hongjun Zhou
  • Patent number: 8137652
    Abstract: The invention provides a method of functionalizing the sidewalls of a plurality of carbon nanotubes with oxygen moieties, the method comprising: exposing a carbon nanotube dispersion to an ozone/oxygen mixture to form a plurality of ozonized carbon nanotubes; and contacting the plurality of ozonized carbon nanotubes with a cleaving agent to form a plurality of sidewall-functionalized carbon nanotubes.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: March 20, 2012
    Assignee: The Research Foundation of State University of New York
    Inventors: Stanislaus S. Wong, Sarbajit Banerjee
  • Patent number: 7833504
    Abstract: The invention provides adducts comprising a carbon nanotube with covalently attached silane moieties, and methods of making such adducts. Examples of silane moieties include trimethoxysilane; hexaphenyldisilane; silylphosphine; 1,1,1,3,5,5,5-heptamethyltrisiloxane; polydimethylsiloxane, poly(N-bromobenzene-1,3-disulfonamide); N,N,N?,N?-tetrabromobenzene-1,3-disulfonamide; hexamethyldisilazane (HMDS); chlorotrimethylsilane (TMCS); trichloromethylsilane (TCMS); an alkyl(alkylamino)silane; a tri(alkoxy)silane; tert-butyldimethylsilane; monochloroaminosilane; dichloroaminosilane; trichloroaminosilane; and dimethylaminosilane.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: November 16, 2010
    Assignee: The Research Foundation of State University of New York
    Inventors: Stanislaus S. Wong, Tirandai Hemraj-Benny
  • Publication number: 20100278720
    Abstract: The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.
    Type: Application
    Filed: May 4, 2010
    Publication date: November 4, 2010
    Inventors: Stanislaus S. Wong, Hongjun Zhou
  • Publication number: 20100240922
    Abstract: The invention provides a method of functionalizing the sidewalls of a plurality of carbon nanotubes with oxygen moieties, the method comprising: exposing a carbon nanotube dispersion to an ozone/oxygen mixture to form a plurality of ozonized carbon nanotubes; and contacting the plurality of ozonized carbon nanotubes with a cleaving agent to form a plurality of sidewall-functionalized carbon nanotubes.
    Type: Application
    Filed: June 27, 2006
    Publication date: September 23, 2010
    Inventors: Stanislaus S. Wong, Sarbajit Banerjee
  • Publication number: 20100129286
    Abstract: The present invention includes a method of making a plurality of nanoparticles comprising single crystalline spherical BaZrO3 particles, cubic BaZrO3 particles or a mixture of both. The method comprises: providing a mixture of a barium precursor, a zirconium precursor and a hydroxide salt or hydroxide salts; heating the mixture to an isothermic annealing temperature, wherein the annealing temperature is in a range of from about 470° C. to about 800° C.; annealing the mixture at the isothermic annealing temperature for an annealing time of in a range of about 15 minutes to about 280 minutes; and cooling the mixture at a fixed cooling rate to form the plurality of nanoparticles, wherein the cooling rate is in a range of from about 2° C./minute to about 200° C./minute.
    Type: Application
    Filed: October 6, 2009
    Publication date: May 27, 2010
    Inventors: Stanislaus S. Wong, Hongjun Zhou
  • Patent number: 7670510
    Abstract: The invention provides an adduct comprising a carbon nanotube and a transitional metal coordination complex, wherein the metal of the complex is attached by a covalent linkage to at least one oxygen moiety on the nanotube.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: March 2, 2010
    Assignee: The Research Foundation of State University of New York
    Inventors: Stanislaus S. Wong, Sarbajit Banerjee
  • Publication number: 20100021471
    Abstract: The present invention includes a conjugates comprising a carbon nanotube with at least one covalently attached recognition module, and at least one covalently attached pharmaceutical compound or a precursor of the pharmaceutical compound, wherein the pharmaceutical compound, or precursor of the pharmaceutical compound, is attached to the carbon nanotube by a linker moiety.
    Type: Application
    Filed: July 25, 2008
    Publication date: January 28, 2010
    Applicant: Brookhaven Science Associates, LLC
    Inventors: Jingyi Chen, Stanislaus S. Wong, Iwao Ojima
  • Publication number: 20100004468
    Abstract: The invention provides an adduct comprising a carbon nanotube and a transitional metal coordination complex, wherein the metal of the complex is attached by a covalent linkage to at least one oxygen moiety on the nanotube.
    Type: Application
    Filed: July 12, 2006
    Publication date: January 7, 2010
    Inventors: Stanislaus S. Wong, Sarbajit Banerjee
  • Publication number: 20090308753
    Abstract: The invention provides a method of controlling the rate of noncovalent silica deposition onto at least one carbon nanotube. The method comprises (a) providing a one chamber electrochemical cell comprising a working electrode comprising at least one carbon nanotube; a reference electrode; a counter electrode; supporting electrolytes; and a reagent solution, wherein the reagent solution comprises a precursor of silica; and (b) applying a selected negative potential to the working electrode, wherein the rate of silica deposition onto the at least one carbon nanotube increases as the potential becomes more negative.
    Type: Application
    Filed: April 21, 2009
    Publication date: December 17, 2009
    Inventors: Stanislaus S. Wong, Mandakini Kanungo
  • Patent number: 7585474
    Abstract: A single crystalline ternary nanostructure having the formula AxByOz, wherein x ranges from 0.25 to 24, and y ranges from 1.5 to 40, and wherein A and B are independently selected from the group consisting of Ag, Al, As, Au, B, Ba, Br, Ca, Cd, Ce, Cl, Cm, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Ga, Gd, Ge, Hf, Ho, I, In, Ir, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Tc, Te, Ti, Tl, Tm, U, V, W, Y, Yb, and Zn, wherein the nanostructure is at least 95% free of defects and/or dislocations.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: September 8, 2009
    Assignee: The Research Foundation of State University of New York
    Inventors: Stanislaus S. Wong, Tae-Jin Park
  • Patent number: 7575735
    Abstract: The present invention includes pure single-crystalline metal oxide and metal fluoride nanostructures, and methods of making same. These nanostructures include nanorods and nanoarrays.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: August 18, 2009
    Assignee: The Research Foundation of State University of New York
    Inventors: Stanislaus S. Wong, Yuanbing Mao
  • Publication number: 20090090886
    Abstract: The present invention relates to nanostructures, in particular to hematite rhombohedra and iron/magnetite nanocomposites, and methods of making same.
    Type: Application
    Filed: October 9, 2007
    Publication date: April 9, 2009
    Inventors: Stanislaus S. Wong, Tae-Jin Park
  • Publication number: 20090060815
    Abstract: The invention provides adducts comprising a carbon nanotube with covalently attached silane moieties, and methods of making such adducts. Examples of silane moieties include trimethoxysilane; hexaphenyldisilane; silylphosphine; 1,1,1,3,5,5,5-heptamethyltrisiloxane; polydimethylsiloxane, poly(N-bromobenzene-1,3-disulfonamide); N,N,N?,N?-tetrabromobenzene-1,3-disulfonamide; hexamethyldisilazane (HMDS); chlorotrimethylsilane (TMCS); trichloromethylsilane (TCMS); an alkyl(alkylamino)silane; a tri(alkoxy)silane; tert-butyldimethylsilane; monochloroaminosilane; dichloroaminosilane; trichloroaminosilane; and dimethylaminosilane.
    Type: Application
    Filed: August 27, 2008
    Publication date: March 5, 2009
    Inventors: Stanislaus S. Wong, Tirandai Hemraj-Benny