Patents by Inventor Stanislaus Wong

Stanislaus Wong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11349117
    Abstract: A method of synthesizing an electrode material for lithium ion batteries from Fe3O4 nanoparticles and multiwalled carbon nanotubes (MWNTs) to yield (Fe3O4-NWNTs) composite heterostructures. The method includes linking the Fe3O4 nanoparticles and multiwalled carbon nanotubes using a ?-? interaction synthesis process to yield the composite heterostructure electrode material. Since Fe3O4 has an intermediate voltage, it can be considered an anode (when paired with a higher voltage material) or a cathode (when paired with a lower voltage material).
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: May 31, 2022
    Assignee: The Research Foundation for the State University of New York
    Inventors: Stanislaus Wong, Lei Wang, Coray McBean, Amy C. Marschilok, Kenneth Takeuchi, Esther S. Takeuchi
  • Publication number: 20220059819
    Abstract: A method of fabricating nanocomposite anode material embodying a lithium titanate (LTO)-multi-walled carbon nanotube (MWNT) composite intended for use in a lithium-ion battery includes providing multi-walled carbon nanotube (MWNTs), including nanotube surfaces, onto which functional oxygenated carboxylic acid moieties are arranged, generating 3D flower-like, lithium titanate (LTO) microspheres, including thin nanosheets and anchoring the acid-functionalized MWNTs onto surfaces of the 3D LTO microspheres by ?-? interaction strategy to realize the nanocomposite anode material.
    Type: Application
    Filed: November 15, 2021
    Publication date: February 24, 2022
    Inventors: Stanislaus Wong, Lei Wang, Coray McBean, Amy C. Marschilok, Kenneth Takeuchi, Esther S. Takeuchi
  • Patent number: 11056685
    Abstract: A method of fabricating nanocomposite anode material embodying a lithium titanate (LTO)-multi-walled carbon nanotube (MWNT) composite intended for use in a lithium-ion battery includes providing multi-walled carbon nanotube (MWNTs), including nanotube surfaces, onto which functional oxygenated carboxylic acid moieties are arranged, generating 3D flower-like, lithium titanate (LTO) microspheres, including thin nanosheets and anchoring the acid-functionalized MWNTs onto surfaces of the 3D LTO microspheres by ?-? interaction strategy to realize the nanocomposite anode material.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: July 6, 2021
    Assignee: The Research Foundation for the State University of New York
    Inventors: Stanislaus Wong, Lei Wang, Coray McBean, Amy C. Marschilok, Kenneth Takeuchi, Esther S. Takeuchi
  • Patent number: 10804543
    Abstract: The present invention provides a method of producing ternary metal-based nanowire networks. The method comprises combining an aqueous mixture of a platinum hydrate, a ruthenium hydrate, and an iron hydrate with a solution of hexadecyltrimethylammonium bromide in chloroform to form an inverse micellar network; adding a reducing agent to reduce metal ions within the inverse micellar network; and isolating the nanowires. The relative amounts of the platinum, ruthenium and iron in the mixture correlate to the atomic ratio of the platinum, ruthenium and iron in the ternary nanowires. The diameters of the ternary nanowires are from about 0.5 nm to about 5 nm.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: October 13, 2020
    Assignee: The Research Foundation for the State University of New York
    Inventors: Stanislaus Wong, Christopher Koenigsmann, Megan Scofield
  • Publication number: 20190260016
    Abstract: A method of fabricating nanocomposite anode material embodying a lithium titanate (LTO)-multi-walled carbon nanotube (MWNT) composite intended for use in a lithium-ion battery includes providing multi-walled carbon nanotube (MWNTs), including nanotube surfaces, onto which functional oxygenated carboxylic acid moieties are arranged, generating 3D flower-like, lithium titanate (LTO) microspheres, including thin nanosheets and anchoring the acid-functionalized MWNTs onto surfaces of the 3D LTO microspheres by ?-? interaction strategy to realize the nanocomposite anode material.
    Type: Application
    Filed: January 17, 2019
    Publication date: August 22, 2019
    Inventors: Stanislaus Wong, Lei Wang, Coray McBean, Amy C. Marschilok, Kenneth Takeuchi, Esther S. Takeuchi
  • Publication number: 20190260013
    Abstract: A method of synthesizing an electrode material for lithium ion batteries from Fe3O4 nanoparticles and multiwalled carbon nanotubes (MWNTs) to yield (Fe3O4-NWNTs) composite heterostructures. The method includes linking the Fe3O4 nanoparticles and multiwalled carbon nanotubes using a ?-? interaction synthesis process to yield the composite heterostructure electrode material. Since Fe3O4 has an intermediate voltage, it can be considered an anode (when paired with a higher voltage material) or a cathode (when paired with a lower voltage material).
    Type: Application
    Filed: January 17, 2019
    Publication date: August 22, 2019
    Inventors: Stanislaus Wong, Lei Wang, Coray McBean, Amy C. Marschilok, Kenneth Takeuchi, Esther S. Takeuchi
  • Patent number: 9624598
    Abstract: The present invention includes a method of producing a segmented 1D nanostructure. The method includes providing a vessel containing a template wherein on one side of the template is a first metal reagent solution and on the other side of the template is a reducing agent solution, wherein the template comprises at least one pore; allowing a first segment of a 1D nanostructure to grow within a pore of the template until a desired length is reached; replacing the first metal reagent solution with a second metal reagent solution; allowing a second segment of a 1D nanostructure to grow from the first segment until a desired length is reached, wherein a segmented 1D nanostructure is produced.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: April 18, 2017
    Assignee: THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORK
    Inventors: Stanislaus Wong, Christopher Koenigsmann
  • Patent number: 9623481
    Abstract: Provided herein is a nanostructure refined by suspending an unrefined nanostructure with a solvent, dispersing the suspended nanostructure in an acidic solution and agitating the acidic solution to produce a refined nanostructure.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: April 18, 2017
    Assignee: THE RESEARCH FOUNDATION OF STATE UNIVERSITY OF NEW YORK
    Inventors: Stanislaus Wong, Christopher Koenigsmann
  • Patent number: 9490486
    Abstract: A method of synthesizing activated electrocatalyst, preferably having a morphology of a nanostructure, is disclosed. The method includes safely and efficiently removing surfactants and capping agents from the surface of the metal structures. With regard to metal nanoparticles, the method includes synthesis of nanoparticle(s) in polar or non-polar solution with surfactants or capping agents and subsequent activation by CO-adsorption-induced surfactant/capping agent desorption and electrochemical oxidation. The method produces activated macroparticle or nanoparticle electrocatalysts without damaging the surface of the electrocatalyst that includes breaking, increasing particle thickness or increasing the number of low coordination sites.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: November 8, 2016
    Assignees: Brookhaven Science Associates, LLC, The Research Foundation for the State University of New York
    Inventors: Radoslav R. Adzic, Kuanping Gong, Yun Cai, Stanislaus Wong, Christopher Koenigsmann
  • Publication number: 20160293969
    Abstract: The present invention provides a method of producing ternary metal-based nanowire networks. The method comprises combining an aqueous mixture of a platinum hydrate, a ruthenium hydrate, and an iron hydrate with a solution of hexadecyltrimethylammonium bromide in chloroform to form an inverse micellar network; adding a reducing agent to reduce metal ions within the inverse micellar network; and isolating the nanowires. The relative amounts of the platinum, ruthenium and iron in the mixture correlate to the atomic ratio of the platinum, ruthenium and iron in the ternary nanowires. The diameters of the ternary nanowires are from about 0.5 nm to about 5 nm.
    Type: Application
    Filed: April 6, 2016
    Publication date: October 6, 2016
    Inventors: Stanislaus Wong, Christopher Koenigsmann, Megan Scofield
  • Publication number: 20160293968
    Abstract: The present invention provides a method of producing ultrathin palladium-transitional metal composite nanowires. The method comprises mixing a palladium salt, a transitional melt salt, a surfactant and a phase transfer agent to form a mixture. The transitional metal is selected from the first row transitional metals. A reducing agent is added to the mixture; and the nanowires are isolated. The relative amount of the palladium and the transitional metal in the mixture correlate to the atomic ratio of the palladium and transitional metal in the composite nanowires. The amount of palladium is at least 60%. The diameters of the composite nanowires are from about 1 nm to about 10 nm.
    Type: Application
    Filed: April 6, 2016
    Publication date: October 6, 2016
    Inventors: Stanislaus Wong, Christopher Koenigsmann, Haiqing Liu
  • Patent number: 9377464
    Abstract: The present invention provides a method of producing a crystalline rare earth phosphate nanostructure. The method comprising: providing a rare earth metal precursor solution and providing a phosphate precursor solution; placing a porous membrane between the metal precursor solution and the phosphate precursor solution, wherein metal cations of the metal precursor solution and phosphate ions of the phosphate precursor solution react, thereby producing a crystalline rare earth metal phosphate nanostructure.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: June 28, 2016
    Assignee: THE RESEARCH FOUNDATION FOR THE STATE OF UNIVERSITY OF NEW YORK
    Inventors: Stanislaus Wong, Fen Zhang
  • Patent number: 8721923
    Abstract: The present invention provides a method of producing a crystalline metal sulfide nanostructure. The metal is a transitional metal or a Group IV metal. In the method, a porous membrane is placed between a metal precursor solution and a sulfur precursor solution. The metal cations of the metal precursor solution and sulfur ions of the sulfur precursor solution react, thereby producing a crystalline metal sulfide nanostructure.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: May 13, 2014
    Assignee: The Research Foundation for the State University of New York
    Inventors: Stanislaus Wong, Fen Zhang
  • Publication number: 20140065437
    Abstract: The present invention includes a method of producing a segmented 1D nanostructure. The method includes providing a vessel containing a template wherein on one side of the template is a first metal reagent solution and on the other side of the template is a reducing agent solution, wherein the template comprises at least one pore; allowing a first segment of a 1D nanostructure to grow within a pore of the template until a desired length is reached; replacing the first metal reagent solution with a second metal reagent solution; allowing a second segment of a 1D nanostructure to grow from the first segment until a desired length is reached, wherein a segmented 1D nanostructure is produced.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 6, 2014
    Applicant: THE RESEARCH FOUNDATION OF STATE UNIVERSITY OF NEW YORK
    Inventors: Stanislaus Wong, Christopher Koenigsmann
  • Publication number: 20120088656
    Abstract: Provided herein is a nanostructure refined by suspending an unrefined nanostructure with a solvent, dispersing the suspended nanostructure in an acidic solution and agitating the acidic solution to produce a refined nanostructure.
    Type: Application
    Filed: October 6, 2011
    Publication date: April 12, 2012
    Applicant: The Research Foundation of State University of New York
    Inventors: Stanislaus WONG, Christopher Koenigsmann
  • Publication number: 20110193024
    Abstract: The present invention provides a method of producing a crystalline metal sulfide nanostructure. The method comprising: providing a metal precursor solution and providing a sulfur precursor solution; placing a porous membrane between the metal precursor solution and the sulfur precursor solution, wherein metal cations of the metal precursor solution and sulfur ions of the sulfur precursor solution react, thereby producing a crystalline metal sulfide nanostructure, wherein the metal is a transitional metal or a Group IV metal.
    Type: Application
    Filed: January 18, 2011
    Publication date: August 11, 2011
    Inventors: Stanislaus Wong, Fen Zhang
  • Publication number: 20070254154
    Abstract: Nanoscale (less than 100 nm) ferroelectric materials are provided using a facile, largescale, environmentally friendly solid-state reaction. Specifically, the solid-state reaction produces perovskite nanowires, perovskite nanocubes, and/or perovskite nanoparticles which can be employed in numerous electronic applications. The solid-state reaction includes reacting a perovskite precursor, i.e., metal oxalate(s), and a metal oxide nanostructural template in the presence of an alkali salt and a surfactant.
    Type: Application
    Filed: June 3, 2005
    Publication date: November 1, 2007
    Inventors: Stanislaus Wong, Yuanbing Mao
  • Publication number: 20070138459
    Abstract: A single crystalline ternary nanostructure having the formula AxByOz, wherein x ranges from 0.25 to 24, and y ranges from 1.5 to 40, and wherein A and B are independently selected from the group consisting of Ag, Al, As, Au, B, Ba, Br, Ca, Cd, Ce, Cl, Cm, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Ga, Gd, Ge, Hf, Ho, I, In, Ir, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Tc, Te, Ti, Ti, Tm, U, V, W, Y, Yb, and Zn, wherein the nanostructure is at least 95% free of defects and/or dislocations.
    Type: Application
    Filed: October 13, 2006
    Publication date: June 21, 2007
    Inventors: Stanislaus Wong, Tae-Jin Park
  • Publication number: 20070113779
    Abstract: The present invention includes pure single-crystalline metal oxide and metal fluoride nanostructures, and methods of making same. These nanostructures include nanorods and nanoarrays.
    Type: Application
    Filed: November 2, 2006
    Publication date: May 24, 2007
    Inventors: Stanislaus Wong, Yuanbing Mao
  • Patent number: 7147834
    Abstract: A low-temperature hydrothermal reaction is provided to generate crystalline perovskite nanotubes such as barium titanate (BaTiO3) and strontium titanate (SrTiO3) that have an outer diameter from about 1 nm to about 500 nm and a length from about 10 nm to about 10 micron. The low-temperature hydrothermal reaction includes the use of a metal oxide nanotube structural template, i.e., precursor. These titanate nanotubes have been characterized by means of X-ray diffraction and transmission electron microscopy, coupled with energy dispersive X-ray analysis and selected area electron diffraction (SAED).
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: December 12, 2006
    Assignee: The Research Foundation of State University of New York
    Inventors: Stanislaus Wong, Yuanbing Mao