Patents by Inventor Stanislav A. Stoupin

Stanislav A. Stoupin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10954607
    Abstract: The luminance of a transmission mode X-ray scintillator diamond plate is dominated by induced defect centers having an excited state lifetime less than 10 msec, and in embodiments less than 1 msec, 100 usec, 10 used, 1 used, 100 nsec, or even 50 nsec, thereby providing enhanced X-ray luminance response and an X-ray flux dynamic range that is linear with X-ray flux on a log-log scale over at least three orders of magnitude. The diamond plate can be a single crystal having a dislocation density of less than 104 per square centimeter, and having surfaces that are ion milled instead of mechanically polished. The defect centers can be SiV centers induced by silicon doping during CVD diamond formation, and/or NV0 centers formed by nitrogen doping followed by applying electron beam irradiation of the diamond plate and annealing.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: March 23, 2021
    Assignees: Euclid Techlabs, LLC, Center for Technology Licensing (“CTL”) at Cornell University, Research Foundation of The City University of New York
    Inventors: Sergey Antipov, Stanislav Stoupin, Alexandre M. Zaitsev
  • Patent number: 9966161
    Abstract: A method and mechanical design for a thin-film diamond crystal mounting apparatus for coherence preservation x-ray optics with optimized thermal contact and minimized crystal strain are provided. The novel thin-film diamond crystal mounting apparatus mounts a thin-film diamond crystal supported by a thick chemical vapor deposition (CVD) diamond film spacer with a thickness slightly thicker than the thin-film diamond crystal, and two groups of thin film thermal conductors, such as thin CVD diamond film thermal conductor groups separated by the thick CVD diamond spacer. The two groups of thin CVD film thermal conductors provide thermal conducting interface media with the thin-film diamond crystal. A piezoelectric actuator is integrated into a flexural clamping mechanism generating clamping force from zero to an optimal level.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: May 8, 2018
    Assignee: UChicago Argonne, LLC
    Inventors: Deming Shu, Yury Shvydko, Stanislav Stoupin, Kwang-Je Kim
  • Publication number: 20170085055
    Abstract: A method and mechanical design for a thin-film diamond crystal mounting apparatus for coherence preservation x-ray optics with optimized thermal contact and minimized crystal strain are provided. The novel thin-film diamond crystal mounting apparatus mounts a thin-film diamond crystal supported by a thick chemical vapor deposition (CVD) diamond film spacer with a thickness slightly thicker than the thin-film diamond crystal, and two groups of thin film thermal conductors, such as thin CVD diamond film thermal conductor groups separated by the thick CVD diamond spacer. The two groups of thin CVD film thermal conductors provide thermal conducting interface media with the thin-film diamond crystal. A piezoelectric actuator is integrated into a flexural clamping mechanism generating clamping force from zero to an optimal level.
    Type: Application
    Filed: September 21, 2015
    Publication date: March 23, 2017
    Inventors: Deming Shu, Yury Shvydko, Stanislav Stoupin, Kwang-Je Kim
  • Patent number: 9529098
    Abstract: An X-ray article and method for analyzing hard X-rays which have interacted with a test system. The X-ray article is operative to diffract or otherwise process X-rays from an input X-ray beam which have interacted with the test system and at the same time provide an electrical circuit adapted to collect photoelectrons emitted from an X-ray optical element of the X-ray article to analyze features of the test system.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: December 27, 2016
    Assignee: UChicago Argonne, LLC
    Inventors: Stanislav Stoupin, Yury Shvydko, John Katsoudas, Vladimir D. Blank, Sergey A. Terentyev
  • Patent number: 9008272
    Abstract: A method and an ultrahigh-resolution spectrometer including a precision mechanical structure for positioning inelastic X-ray scattering optics are provided. The spectrometer includes an X-ray monochromator and an X-ray analyzer, each including X-ray optics of a collimating (C) crystal, a pair of dispersing (D) element crystals, anomalous transmission filter (F) and a wavelength (W) selector crystal. A respective precision mechanical structure is provided with the X-ray monochromator and the X-ray analyzer. The precision mechanical structure includes a base plate, such as an aluminum base plate; positioning stages for D-crystal alignment; positioning stages with an incline sensor for C/F/W-crystal alignment, and the positioning stages including flexure-based high-stiffness structure.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: April 14, 2015
    Assignee: UChicago Argonne, LLC
    Inventors: Deming Shu, Yuri Shvydko, Stanislav A. Stoupin, Ruben Khachatryan, Kurt A. Goetze, Timothy Roberts
  • Publication number: 20150092925
    Abstract: An X-ray article and method for analyzing hard X-rays which have interacted with a test system. The X-ray article is operative to diffract or otherwise process X-rays from an input X-ray beam which have interacted with the test system and at the same time provide an electrical circuit adapted to collect photoelectrons emitted from an X-ray optical element of the X-ray article to analyze features of the test system.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 2, 2015
    Applicant: Uchicago Argonne, LLC
    Inventors: Stanislav Stoupin, Yury Shvydko, John Katsoudas, Vladimir D. Blank, Sergey A. Terentyev
  • Publication number: 20140023180
    Abstract: A method and an ultrahigh-resolution spectrometer including a precision mechanical structure for positioning inelastic X-ray scattering optics are provided. The spectrometer includes an X-ray monochromator and an X-ray analyzer, each including X-ray optics of a collimating (C) crystal, a pair of dispersing (D) element crystals, anomalous transmission filter (F) and a wavelength (W) selector crystal. A respective precision mechanical structure is provided with the X-ray monochromator and the X-ray analyzer. The precision mechanical structure includes a base plate, such as an aluminum base plate; positioning stages for D-crystal alignment; positioning stages with an incline sensor for C/F/W-crystal alignment, and the positioning stages including flexure-based high-stiffness structure.
    Type: Application
    Filed: July 18, 2012
    Publication date: January 23, 2014
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Deming Shu, Yuri Shvydko, Stanislav A. Stoupin, Ruben Khachatryan, Kurt A. Goetze, Timothy Roberts