Patents by Inventor Stanley J. Baran

Stanley J. Baran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10251011
    Abstract: Systems, apparatuses and methods may provide away to render augmented reality (AR) and/or virtual reality (VR) sensory enhancements using ray tracing. More particularly, systems, apparatuses and methods may provide a way to normalize environment information captured by multiple capture devices, and calculate, for an observer, the sound sources or sensed events vector paths. The systems, apparatuses and methods may detect and/or manage one or more capture devices and assign one or more the capture devices based on one or more conditions to provide observer an immersive VR/AR experience.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: April 2, 2019
    Assignee: Intel Corporation
    Inventors: Joydeep Ray, Travis T. Schluessler, Prasoonkumar Surti, John H. Feit, Nikos Kaburlasos, Jacek Kwiatkowski, Abhishek R. Appu, James M. Holland, Jeffery S. Boles, Jonathan Kennedy, Louis Feng, Atsuo Kuwahara, Barnan Das, Narayan Biswal, Stanley J. Baran, Gokcen Cilingir, Nilesh V. Shah, Archie Sharma, Mayuresh M. Varerkar
  • Publication number: 20190095703
    Abstract: A mechanism is described for facilitating recognition, reidentification, and security in machine learning at autonomous machines. A method of embodiments, as described herein, includes facilitating a camera to detect one or more objects within a physical vicinity, the one or more objects including a person, and the physical vicinity including a house, where detecting includes capturing one or more images of one or more portions of a body of the person. The method may further include extracting body features based on the one or more portions of the body, comparing the extracted body features with feature vectors stored at a database, and building a classification model based on the extracted body features over a period of time to facilitate recognition or reidentification of the person independent of facial recognition of the person.
    Type: Application
    Filed: September 6, 2018
    Publication date: March 28, 2019
    Applicant: Intel Corporation
    Inventors: Barnan Das, Mayuresh M. Varerkar, Narayan Biswal, Stanley J. Baran, Gokcen Cilingir, Nilesh V. Shah, Archie Sharma, Sherine Abdelhak, Praneetha Kotha, Neelay Pandit, John C. Weast, Mike B. Macpherson, Dukhwan Kim, Linda L. Hurd, Abhishek R. Appu, Altug Koker, Joydeep Ray
  • Patent number: 10242486
    Abstract: Systems, apparatuses and methods may provide away to render augmented reality and virtual reality (VR/AR) environment information. More particularly, systems, apparatuses and methods may provide a way to selectively suppress and enhance VR/AR renderings of n-dimensional environments. The systems, apparatuses and methods may deepen a user's VR/AR experience by focusing on particular feedback information, while suppressing other feedback information from the environment.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: March 26, 2019
    Assignee: Intel Corporation
    Inventors: Chandrasekaran Sakthivel, Michael Apodaca, Kai Xiao, Altug Koker, Jeffery S. Boles, Adam T. Lake, Nikos Kaburlasos, Joydeep Ray, John H. Feit, Travis T. Schluessler, Jacek Kwiatkowski, James M. Holland, Prasoonkumar Surti, Jonathan Kennedy, Louis Feng, Barnan Das, Narayan Biswal, Stanley J. Baran, Gokcen Cilingir, Nilesh V. Shah, Archie Sharma, Mayuresh M. Varerkar
  • Patent number: 10165222
    Abstract: Video capture is described in which the video frame rate is based on an estimate of motion periodicity. In one example, a period of motion of a moving object is determined at a sensor device. A frame capture rate of a video camera that is attached to the moving object is adjusted based on the period of motion. Video frames are captured at the adjusted frame rate, and the captured video frames are stored.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: December 25, 2018
    Assignee: INTEL CORPORATION
    Inventors: Stanley J. Baran, Barnan Das, Richmond Hicks
  • Publication number: 20180308269
    Abstract: Systems, apparatuses and methods may a performance-enhanced computing system comprising a sensor for measuring luminance values corresponding to light focused onto the sensor at a plurality of pixel locations, a memory including a set of instructions, and a processor. The processor executes a set of instructions causing the system to generate a multi-segment tone mapping curve, generate a set of tone mapping values corresponding to the multi-segment tone mapping curve for equally spaced input values between zero and one for storage into a look up table, and process the luminance values using the look up table to apply the tone mapping curve to the luminance values of the pixels.
    Type: Application
    Filed: June 5, 2017
    Publication date: October 25, 2018
    Applicant: Intel Corporation
    Inventors: Stanley J. Baran, Abhishek R. Appu, Sang-Hee Lee, Atthar H. Mohammed, Jong Dae Oh, Hiu-Fai R. Chan, Joydeep Ray, Kunjal Parikh, Changliang Wang, Srikanth Kambhatla, Gary Smith, Satyanarayana Avadhanam, Richmond Hicks, Robert J. Johnston, Narayan Biswal, Susanta Bhattacharjee
  • Publication number: 20180307899
    Abstract: A mechanism is described for facilitating recognition, reidentification, and security in machine learning at autonomous machines. A method of embodiments, as described herein, includes facilitating a camera to detect one or more objects within a physical vicinity, the one or more objects including a person, and the physical vicinity including a house, where detecting includes capturing one or more images of one or more portions of a body of the person. The method may further include extracting body features based on the one or more portions of the body, comparing the extracted body features with feature vectors stored at a database, and building a classification model based on the extracted body features over a period of time to facilitate recognition or reidentification of the person independent of facial recognition of the person.
    Type: Application
    Filed: April 24, 2017
    Publication date: October 25, 2018
    Applicant: Intel Corproation
    Inventors: Barnan Das, MAYURESH M. VARERKAR, NARAYAN BISWAL, STANLEY J. BARAN, GOKCEN CILINGIR, NILESH V. SHAH, ARCHIE SHARMA, SHERINE ABDELHAK, Praneetha Kotha, Neelay Pandit, John C. Weast, Mike B. Macpherson, Dukhwan Kim, Linda L. Hurd, Abhishek R. Appu, Altug Koker, Joydeep Ray
  • Publication number: 20180310113
    Abstract: Systems, apparatuses and methods may provide away to render augmented reality (AR) and/or virtual reality (VR) sensory enhancements using ray tracing. More particularly, systems, apparatuses and methods may provide a way to normalize environment information captured by multiple capture devices, and calculate, for an observer, the sound sources or sensed events vector paths. The systems, apparatuses and methods may detect and/or manage one or more capture devices and assign one or more the capture devices based on one or more conditions to provide observer an immersive VR/AR experience.
    Type: Application
    Filed: April 24, 2017
    Publication date: October 25, 2018
    Inventors: Joydeep Ray, Travis T. Schluessler, Prasoonkumar Surti, John H. Feit, Nikos Kaburlasos, Jacek Kwiatkowski, Abhishek R. Appu, James M. Holland, Jeffery S. Boles, Jonathan Kennedy, Louis Feng, Atsuo Kuwahara, Barnan Das, Narayan Biswal, Stanley J. Baran, Gokcen Cilingir, Nilesh V. Shah, Archie Sharma, Mayuresh M. Varerkar
  • Publication number: 20180307981
    Abstract: An apparatus to facilitate neural network (NN) training is disclosed. The apparatus includes training logic to receive one or more network constraints and train the NN by automatically determining a best network layout and parameters based on the network constraints.
    Type: Application
    Filed: April 24, 2017
    Publication date: October 25, 2018
    Inventors: Gokcen Cilingir, Elmoustapha Ould-Ahmed-Vall, Rajkishore Barik, Kevin Nealis, Xiaoming Chen, Justin E. Gottschlich, Prasoonkumar Surti, Chandrasekaran Sakthivel, Abhishek R. Appu, John C. Weast, Sara S. Baghsorkhi, Barnan Das, Narayan Biswal, Stanley J. Baran, Nilesh Shah, Archie Sharma, Mayuresh M. Varerkar
  • Publication number: 20180307306
    Abstract: Systems, apparatuses and methods may provide for technology to improve user experience when viewing simulated 3D objects on a display. Head and upper-body movements may be tracked and recognized as gestures to alter the displayed viewing angle. The technology provides for a very natural way to look around, under, or over objects.
    Type: Application
    Filed: April 24, 2017
    Publication date: October 25, 2018
    Inventors: Robert J. Johnston, Satyanarayana Avadhanam, Changliang Wang, Narayan Biswal, Archie Sharma, Richmond Hicks, Joydeep Ray, Abhishek R. Appu, Stanley J. Baran, Sang-Hee Lee, Atthar H. Mohammed, Jong Dae Oh, Hiu-Fai Chan, Sumit Mohan, Jill M. Boyce, Yi-Jen Chiu
  • Patent number: 10108850
    Abstract: A mechanism is described for facilitating recognition, reidentification, and security in machine learning at autonomous machines. A method of embodiments, as described herein, includes facilitating a camera to detect one or more objects within a physical vicinity, the one or more objects including a person, and the physical vicinity including a house, where detecting includes capturing one or more images of one or more portions of a body of the person. The method may further include extracting body features based on the one or more portions of the body, comparing the extracted body features with feature vectors stored at a database, and building a classification model based on the extracted body features over a period of time to facilitate recognition or reidentification of the person independent of facial recognition of the person.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: October 23, 2018
    Assignee: Intel Corporation
    Inventors: Barnan Das, Mayuresh M. Varerkar, Narayan Biswal, Stanley J. Baran, Gokcen Cilingir, Nilesh V. Shah, Archie Sharma, Sherine Abdelhak, Praneetha Kotha, Neelay Pandit, John C. Weast, Mike B. Macpherson, Dukhwan Kim, Linda L. Hurd, Abhishek R. Appu, Altug Koker, Joydeep Ray
  • Publication number: 20180300556
    Abstract: A mechanism is described for facilitating person tracking and data security in machine learning at autonomous machines. A method of embodiments, as described herein, includes detecting, by a camera associated with one or more trackers, a person within a physical vicinity, where detecting includes capturing one or more images the person. The method may further include tracking, by the one or more trackers, the person based on the one or more images of the person, where tracking includes collect tracking data relating to the person. The method may further include selecting a tracker of the one or more trackers as a preferred tracker based on the tracking data.
    Type: Application
    Filed: April 17, 2017
    Publication date: October 18, 2018
    Applicant: Intel Corporation
    Inventors: MAYURESH M. VARERKAR, BARNAN DAS, NARAYAN BISWAL, STANLEY J. BARAN, GOKCEN CILINGIR, NILESH V. SHAH, ARCHIE SHARMA, SHERINE ABDELHAK, SACHIN GODSE, FARSHAD AKHBARI, NARAYAN SRINIVASA, ALTUG KOKER, NADATHUR RAJAGOPALAN SATISH, DUKHWAN KIM, FENG CHEN, ABHISHEK R. APPU, JOYDEEP RAY, PING T. TANG, MICHAEL S. STRICKLAND, XIAOMING CHEN, ANBANG YAO, TATIANA SHPEISMAN, Vasanth Ranganathan, Sanjeev Jahagirdir
  • Publication number: 20180302556
    Abstract: Systems and methods may provide for capturing 360 degree video, and multi-resolution encoding, processing and displaying of the video based on a field of view (FOV) and region of interest (ROI) for a viewer. The ROI may be determined based on eye tracking information (ETI) and the video may be encoded for viewports within the FOV at a high resolution and for other viewports outside the FOV at a lower resolution. ROI in the video may be encoded at a high resolution and areas outside of the ROI may be encoded at a lower resolution. The ETI enables the selective display of one or more warnings based on the gaze of a user to improve the efficiency of the warning. 3D glasses having variable lens may be used to adjust the focal distance of a virtual display to match a virtual distance of an object based on stereo distance cues.
    Type: Application
    Filed: April 17, 2017
    Publication date: October 18, 2018
    Inventors: Stanley J. Baran, Abhishek R. Appu, Sang-Hee Lee, Atthar H. Mohammed, Jong Dae Oh, Hiu-Fai R. Chan, Joydeep Ray, Barnan Das, Archie Sharma, Richmond Hicks, Changliang Wang, Satyanarayana Avadhanam, Robert J. Johnston, Narayan Biswal
  • Publication number: 20180300905
    Abstract: Image information is often transmitted from one electronic device to another. Such information is typically encoded and/or compressed to reduce the bandwidth required for transmission and/or to decrease the time necessary for transmission. Embodiments are directed to tagging objects or primitives with attribute tags to facilitate the encoding process. Other embodiments are directed to codecs running on hardware and/or software.
    Type: Application
    Filed: April 17, 2017
    Publication date: October 18, 2018
    Inventors: Robert J. Johnston, Abhishek R. Appu, Stanley J. Baran, Sang-Hee Lee, Atthar H. Mohammed, Jong Dae Oh, Hiu-Fai R. Chan, Joydeep Ray
  • Publication number: 20180300940
    Abstract: Systems, apparatuses and methods may provide away to render augmented reality and virtual reality (VR/AR) environment information. More particularly, systems, apparatuses and methods may provide a way to selectively suppress and enhance VR/AR renderings of n-dimensional environments. The systems, apparatuses and methods may deepen a user's VR/AR experience by focusing on particular feedback information, while suppressing other feedback information from the environment.
    Type: Application
    Filed: April 17, 2017
    Publication date: October 18, 2018
    Inventors: Chandrasekaran Sakthivel, Michael Apodaca, Kai Xiao, Altug Koker, Jeffery S. Boles, Adam T. Lake, Nikos Kaburlasos, Joydeep Ray, John H. Feit, Travis T. Schluessler, Jacek Kwiatkowski, James M. Holland, Prasoonkumar Surti, Jonathan Kennedy, Louis Feng, Barnan Das, Narayan Biswal, Stanley J. Baran, Gokcen Cilingir, Nilesh V. Shah, Archie Sharma, Mayuresh M. Varerkar
  • Publication number: 20180300839
    Abstract: An embodiment of an electronic processing system may include an application processor, persistent storage media communicatively coupled to the application processor, a graphics subsystem communicatively coupled to the application processor, a power budget analyzer to identify a power budget for one or more of the application processor, the persistent storage media, and the graphics subsystem, a target analyzer communicatively coupled to the graphics subsystem to identify a target for the graphics subsystem, and a parameter adjuster to adjust one or more parameters of the graphics subsystem based on one or more of the identified power budget and the identified target.
    Type: Application
    Filed: April 17, 2017
    Publication date: October 18, 2018
    Inventors: Abhishek R. Appu, Stanley J. Baran, Sang-Hee Lee, Atthar H. Mohammed, Jong Dae Oh, Hiu-Fai R. Chan, Jill M. Boyce, Fangwen Fu, Satya N. Yedidi, Sumit Mohan, James M. Holland, Keith W. Rowe, Altug Koker
  • Publication number: 20180292743
    Abstract: Systems and methods may provide for utilizing stereoscopic inputs to take advantage of a codec to improve encoding and processing efficiency. The left and right channels of the stereoscopic inputs provide inputs for views of the same image frames. The frames may be offset by the parallax effect. The systems and methods utilize similarities between the left and right channels to allow motions (i.e., motion vectors) related to an object in the scene for one view to be spatially translated for the other view based on known differences in distance and geometry to avoid the necessity to encode and process both channel views. The system and method thereby improves the encoding and processing efficiency of motion processes such as motion vectors, motion sampling, macroblock sampling, edge sampling and the like.
    Type: Application
    Filed: April 10, 2017
    Publication date: October 11, 2018
    Inventors: Stanley J. Baran, Abhishek R. Appu, Sang-Hee Lee, Atthar H. Mohammed, Jong Dae Oh, Hiu-Fai R. Chan, Joydeep Ray
  • Publication number: 20180295282
    Abstract: Systems, apparatuses and methods may determine, on a per camera basis, an interest level with respect to panoramic video content, identify a subset of cameras in a plurality of cameras for which the interest level is below a threshold, and reduce power consumption in the subset of cameras. Additionally, technology may determine a projection format associated with panoramic video content, identify one or more discontinuous boundaries in the projection format, and modify an encoding scheme associated with the panoramic video content based on the discontinuous boundaries. Moreover, an encoded frame may be assigned to a temporal scalability layer that has a higher priority than a layer to which an asynchronous space warp frame is assigned. Additionally, technology may reduce the encoding complexity of a boundary between an active region and an inactive region in fisheye content.
    Type: Application
    Filed: April 10, 2017
    Publication date: October 11, 2018
    Inventors: Jill M. Boyce, Stanley J. Baran, Sumit Mohan, Yi-Jen Chiu, Jason Tanner, Atthar H. Mohammed, Richmond Hicks, Barnan Das
  • Publication number: 20180295367
    Abstract: Systems, apparatuses and methods may include a source device that generates a scene change notification in response to a movement of a camera, modifies an encoding scheme associated with the video content captured by the camera in response to the scene change notification, identifies a full-frame difference threshold, wherein scene analysis information includes frame difference data, and compares the frame difference data to an intermediate threshold that is less than the full-frame difference threshold, wherein the scene change notification is generated when the frame difference data exceeds the intermediate threshold. A sink device may obtain transport quality data associated with video content, modify an output parameter of a display based on the transport quality data, determine a view perspective of a still image containing a plurality of image slices, retrieve only a subset of the plurality of image slices based on the view perspective and decode the retrieved subset.
    Type: Application
    Filed: April 10, 2017
    Publication date: October 11, 2018
    Inventors: Atthar H. Mohammed, Abhishek R. Appu, Stanley J. Baran, Sang-Hee Lee, Jong Dae Oh, Hiu-Fai R. Chan, Joydeep Ray, Narayan Biswal, Richmond Hicks, Arthur J. Runyan, Nausheen Ansari
  • Publication number: 20180288433
    Abstract: Systems and methods may provide for occlusion detection in frame rate conversion. Detecting the occlusion allows frame rate conversion to be more accurately performed. In some embodiments, one or more stereoscopic depth cameras may be used to determine the depth of a moving object to more accurately determine the occlusion. In some embodiments, the compression ratio may be adjusted to balance the frame rate and power to help ensure compliance with a power budget. In at least some embodiments, the motion of a camera may be passed from a 3D render pipe to an encoder to avoid motion calculation and thereby saving power.
    Type: Application
    Filed: April 24, 2017
    Publication date: October 4, 2018
    Inventors: Jong Dae Oh, Abhishek R. Appu, Stanley J. Baran, Sang-Hee Lee, Atthar H. Mohammed, Hiu-Fai R. Chan, Joydeep Ray
  • Publication number: 20180281684
    Abstract: A system, method, and computer readable medium may include technology to enable optimal usage of automotive virtual mirrors. A gaze detector monitors a driver's eyes to determine if the driver is looking in the direction of a virtual mirror. If the driver is not looking in the direction of virtual mirror, all virtual mirrors are placed in a low operational mode. If the driver is looking in the direction of a virtual mirror, the virtual mirror being viewed is placed in a high operational mode and all other virtual mirrors are placed in the low operational mode.
    Type: Application
    Filed: April 1, 2017
    Publication date: October 4, 2018
    Inventors: Jill M. Boyce, Stanley J. Baran, Sumit Mohan, Jason Tanner, Yi-Jen Chiu, Atthar H. Mohammed