Patents by Inventor Stanley K. Ault

Stanley K. Ault has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210159759
    Abstract: A flywheel formed of a composite material having fibers, oriented substantially in a circumferential direction around the flywheel, embedded in a matrix material. The flywheel having an inner surface, an outer surface, and a thickness therebetween and defining an axis of rotation. A plurality of load masses are distributed circumferentially on the inner surface at a longitudinal segment along the axis. A rotation of the flywheel about the axis with a rotational velocity generating hoop stress in the fibers in the circumferential direction and through-thickness stress is generated in the matrix material in a radial direction. Each load mass produces a force on the inner surface operative to reduce the maximum through-thickness stress in the matrix material as the flywheel rotates about the axis. The rotational velocity otherwise sufficient to produce structural failure of the matrix material produces structural failure of the fibers and not the matrix material.
    Type: Application
    Filed: July 6, 2020
    Publication date: May 27, 2021
    Applicant: MANAGEMENT SERVICES GROUP, INC., DOING BUSINESS AS (DBA) GLOBAL TECHNICAL SYSTEMS
    Inventors: Scott Eric GROVES, Stanley K. AULT
  • Patent number: 10715007
    Abstract: A flywheel formed of a composite material having fibers, oriented substantially in a circumferential direction around the flywheel, embedded in a matrix material. The flywheel having an inner surface, an outer surface, and a thickness therebetween and defining an axis of rotation. A plurality of load masses are distributed circumferentially on the inner surface at a longitudinal segment along the axis. A rotation of the flywheel about the axis with a rotational velocity generating hoop stress in the fibers in the circumferential direction and through-thickness stress is generated in the matrix material in a radial direction. Each load mass produces a force on the inner surface operative to reduce the maximum through-thickness stress in the matrix material as the flywheel rotates about the axis. The rotational velocity otherwise sufficient to produce structural failure of the matrix material produces structural failure of the fibers and not the matrix material.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: July 14, 2020
    Assignee: Management Services Group, Inc.
    Inventors: Scott Eric Groves, Stanley K. Ault
  • Publication number: 20180337576
    Abstract: A flywheel formed of a composite material having fibers, oriented substantially in a circumferential direction around the flywheel, embedded in a matrix material. The flywheel having an inner surface, an outer surface, and a thickness therebetween and defining an axis of rotation. A plurality of load masses are distributed circumferentially on the inner surface at a longitudinal segment along the axis. A rotation of the flywheel about the axis with a rotational velocity generating hoop stress in the fibers in the circumferential direction and through-thickness stress is generated in the matrix material in a radial direction. Each load mass produces a force on the inner surface operative to reduce the maximum through-thickness stress in the matrix material as the flywheel rotates about the axis. The rotational velocity otherwise sufficient to produce structural failure of the matrix material produces structural failure of the fibers and not the matrix material.
    Type: Application
    Filed: July 20, 2018
    Publication date: November 22, 2018
    Inventors: Scott Eric GROVES, Stanley K. AULT
  • Patent number: 10050491
    Abstract: A flywheel formed of a composite material having fibers, oriented substantially in a circumferential direction around the flywheel, embedded in a matrix material. The flywheel having an inner surface, an outer surface, and a thickness therebetween and defining an axis of rotation. A plurality of load masses are distributed circumferentially on the inner surface at a longitudinal segment along the axis. A rotation of the flywheel about the axis with a rotational velocity generating hoop stress in the fibers in the circumferential direction and through-thickness stress is generated in the matrix material in a radial direction. Each load mass produces a force on the inner surface operative to reduce the maximum through-thickness stress in the matrix material as the flywheel rotates about the axis. The rotational velocity otherwise sufficient to produce structural failure of the matrix material produces structural failure of the fibers and not the matrix material.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: August 14, 2018
    Assignee: MANAGEMENT SERVICES GROUP, INC.
    Inventors: Scott Eric Groves, Stanley K. Ault
  • Publication number: 20170271943
    Abstract: A flywheel formed of a composite material having fibers, oriented substantially in a circumferential direction around the flywheel, embedded in a matrix material. The flywheel having an inner surface, an outer surface, and a thickness therebetween and defining an axis of rotation. A plurality of load masses are distributed circumferentially on the inner surface at a longitudinal segment along the axis. A rotation of the flywheel about the axis with a rotational velocity generating hoop stress in the fibers in the circumferential direction and through-thickness stress is generated in the matrix material in a radial direction. Each load mass produces a force on the inner surface operative to reduce the maximum through-thickness stress in the matrix material as the flywheel rotates about the axis. The rotational velocity otherwise sufficient to produce structural failure of the matrix material produces structural failure of the fibers and not the matrix material.
    Type: Application
    Filed: May 31, 2017
    Publication date: September 21, 2017
    Applicant: MANAGEMENT SERVICES GROUP, INC., DOING BUSINESS AS (DBA) GLOBAL TECHNICAL SYSTEMS
    Inventors: Scott Eric GROVES, Stanley K. AULT
  • Publication number: 20160153522
    Abstract: This invention provides for a method to provide the highest possible stored energy density (Watt-hour/kg) in rotating composite flywheels, which in turn will enable an increased application of said devices. Segmented high density (mass loading) materials are positioned and bonded against all free inner surfaces of a high strength low density composite rotor/rim. Traditional composite flywheels do not incorporate mass loading of the composite rotor, i.e., most of the stored energy is contained in the rotating composite rotor. The segmented materials do not fail under the high centrifugal loads, thereby contributing significantly to the overall stored energy density of the composite flywheel system. The high strength composite rotor is engineered to withstand the additional centrifugal loading effects imparted from the segmented masses. An additional benefit from completely loading the inner surface of the composite rotor as uniformly as possible is that it minimizes any unwanted rotor dynamic instabilities.
    Type: Application
    Filed: December 2, 2014
    Publication date: June 2, 2016
    Applicant: Management Services Group, Inc., Doing Business As (DBA) Global Technical Systems
    Inventors: Scott Eric Groves, Stanley K. Ault
  • Patent number: 5271283
    Abstract: A gauge for detecting the impulse generated in sample materials by X-rays or other impulse producing mechanisms utilizes a pair of flat annular springs to support a plunger relative to a housing which may itself be supported by a pair of flat annular springs in a second housing. The plunger has a mounting plate mounted on one end and at the other, a position or velocity transducer is mounted. The annular springs consist of an outer ring and an inner ring with at least three arcuate members connecting the outer ring with the inner ring.
    Type: Grant
    Filed: March 31, 1992
    Date of Patent: December 21, 1993
    Assignee: The United States of America as represented by The United States Department of Energy
    Inventor: Stanley K. Ault