Patents by Inventor Stanley K. Searing

Stanley K. Searing has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12133755
    Abstract: Techniques are provided for x-ray image data monitoring and signaling for patient safety. A methodology implementing the techniques according to an embodiment includes integrating energy associated with a received x-ray pulse at an array of pixels. The method also includes multiplexing a readout of the integrated energy from the array of pixels, as analog signals, into channels, and performing analog to digital conversion of the analog signals of the channels into digital signals. The method further includes generating an error indicator in response to determining that a calculated mean of the digital signals is either greater than an upper threshold value associated with saturation or less than a lower threshold value associated with underexposure. The method further includes transmitting the error indicator over a Universal Serial Bus, to an imaging system, to terminate transmission of further x-ray pulses.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: November 5, 2024
    Assignee: BAE Systems Imaging Solutions Inc.
    Inventors: Stanley K. Searing, Kwang Bo Cho, Hung T. Do, Stephen W. Mims, Marc K. Thacher, Bruce E. Willy, Glen L. Collier, Douglas W. Teeter, George Y. Wang
  • Patent number: 12015870
    Abstract: Techniques are provided for x-ray onset detection for an intraoral dental sensor. A methodology implementing the techniques according to an embodiment includes calculating a plurality of superpixel values for each of a plurality of rows of detector pixels of a sensor. Each of the superpixel values is based on a sum of pixel values of a set of pixels associated with the superpixel value, the set of pixels selected from the detection row of a current frame of the sensor. The method also includes calculating a difference between each of the superpixel values and a corresponding stored superpixel value generated from a previous sensor frame and determining if the differences exceed a superpixel threshold value. The method further includes incrementing a hit counter in response to the determination and generating a detection signal if the hit counter exceeds a hit count threshold, otherwise proceeding to process the next detection row.
    Type: Grant
    Filed: August 3, 2022
    Date of Patent: June 18, 2024
    Assignee: BAE Systems Imaging Solutions Inc.
    Inventors: Glen L. Collier, Stephen W. Mims, George Y. Wang, Kun Zhao, Stanley K. Searing
  • Patent number: 11911197
    Abstract: Techniques are provided for x-ray sensing for intraoral tomography. A methodology implementing the techniques according to an embodiment includes detecting an x-ray pulse based on energy received at one or more pixels of a pixel array. The method also includes integrating the energy received at each of the pixels of the array of pixels, in response to the detection, wherein the energy received at each of the pixels is associated with the x-ray pulse. The method further includes multiplexing readouts of analog signals from the array of pixels into two or more parallel channels. The method further includes simultaneously converting (or otherwise in parallel) the analog signals of each of the channels into digital signals and storing the digital signals in memory as frames of data. The method may further include, for example, transmitting the frames of data from the memory, over a Universal Serial Bus, to an imaging system.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: February 27, 2024
    Assignee: BAE Systems Imaging Solutions Inc.
    Inventors: Stanley K. Searing, Marc K. Thacher, Kwang Bo Cho, Hung T. Do, Stephen W. Mims, Bruce E. Willy, Glen L. Collier, Douglas W. Teeter, George Y. Wang
  • Publication number: 20240048667
    Abstract: Techniques are provided for x-ray onset detection for an intraoral dental sensor. A methodology implementing the techniques according to an embodiment includes calculating a plurality of superpixel values for each of a plurality of rows of detector pixels of a sensor. Each of the superpixel values is based on a sum of pixel values of a set of pixels associated with the superpixel value, the set of pixels selected from the detection row of a current frame of the sensor. The method also includes calculating a difference between each of the superpixel values and a corresponding stored superpixel value generated from a previous sensor frame and determining if the differences exceed a superpixel threshold value. The method further includes incrementing a hit counter in response to the determination and generating a detection signal if the hit counter exceeds a hit count threshold, otherwise proceeding to process the next detection row.
    Type: Application
    Filed: August 3, 2022
    Publication date: February 8, 2024
    Applicant: BAE Systems Imaging Solutions Inc.
    Inventors: Glen L. Collier, Stephen W. Mims, George Y. Wang, Kun Zhao, Stanley K. Searing
  • Publication number: 20230181134
    Abstract: Techniques are provided for x-ray image data monitoring and signaling for patient safety. A methodology implementing the techniques according to an embodiment includes integrating energy associated with a received x-ray pulse at an array of pixels. The method also includes multiplexing a readout of the integrated energy from the array of pixels, as analog signals, into channels, and performing analog to digital conversion of the analog signals of the channels into digital signals. The method further includes generating an error indicator in response to determining that a calculated mean of the digital signals is either greater than an upper threshold value associated with saturation or less than a lower threshold value associated with underexposure. The method further includes transmitting the error indicator over a Universal Serial Bus, to an imaging system, to terminate transmission of further x-ray pulses.
    Type: Application
    Filed: December 14, 2021
    Publication date: June 15, 2023
    Applicant: BAE Systems Imaging Solutions Inc.
    Inventors: Stanley K. Searing, Kwang Bo Cho, Hung T. Do, Stephen W. Mims, Marc K. Thacher, Bruce E. Willy, Glen L. Collier, Douglas W. Teeter, George Y. Wang
  • Publication number: 20230181133
    Abstract: Techniques are provided for x-ray sensing for intraoral tomography. A methodology implementing the techniques according to an embodiment includes detecting an x-ray pulse based on energy received at one or more pixels of a pixel array. The method also includes integrating the energy received at each of the pixels of the array of pixels, in response to the detection, wherein the energy received at each of the pixels is associated with the x-ray pulse. The method further includes multiplexing readouts of analog signals from the array of pixels into two or more parallel channels. The method further includes simultaneously converting (or otherwise in parallel) the analog signals of each of the channels into digital signals and storing the digital signals in memory as frames of data. The method may further include, for example, transmitting the frames of data from the memory, over a Universal Serial Bus, to an imaging system.
    Type: Application
    Filed: December 14, 2021
    Publication date: June 15, 2023
    Applicant: BAE Systems Imaging Solutions Inc.
    Inventors: Stanley K. Searing, Marc K. Thacher, Kwang Bo Cho, Hung T. Do, Stephen W. Mims, Bruce E. Willy, Glen L. Collier, Douglas W. Teeter, George Y. Wang