Patents by Inventor Stanley L. Hager

Stanley L. Hager has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130023599
    Abstract: The present invention provides polyurethane foams and elastomers made with an alkoxylated vegetable oil hydroxylate replacing at least a portion of the typically used petroleum-based polyol(s). Also provided are processes for making the inventive foams and elastomers and for making alkoxylated vegetable oil hydroxylates. The alkoxylated vegetable oil hydroxylates are environmentally-friendly, bio-based polyols which advantageously also offer the potential of improved hydrophobicity in polyurethane foams and elastomers. The inventive polyurethane foams and elastomers may find use in a wide variety of products such as automobile interior parts, polyurethane structural foams, floor coatings and athletic running tracks.
    Type: Application
    Filed: September 26, 2012
    Publication date: January 24, 2013
    Applicant: Bayer MaterialScience LLC
    Inventors: Yu-Ling Hsiao, Richard G. Skorpenske, Bryan D. Kaushiva, Kenneth G. McDaniel, Jose F. Pazos, Stanley L. Hager, Karl W. Haider
  • Publication number: 20120016048
    Abstract: The present invention provides flexible conventional polyurethane foams made from at least one polyisocyanate and at least one vegetable oil alkoxylated in the presence of a double metal cyanide (DMC) catalyst, optionally at least one non-vegetable oil-based polyol, generally in the presence of a blowing agent and optionally in the presence of a surfactant, pigment, flame retardant, catalyst or filler. The alkoxylated natural oil must have (a) an ethylene oxide content in the alkoxylated segment greater than 20% by weight, (b) a primary hydroxyl group content of at least 10%, with the sum of (a)+(b) being at least 30% but no greater than 60%, The alkoxylated natural oils are environmentally-friendly, bio-based polyols which can be used to increase the “green” content of polyurethane foams without having detrimental effects on foam properties.
    Type: Application
    Filed: July 16, 2010
    Publication date: January 19, 2012
    Applicant: Bayer MaterialScience LLC
    Inventors: Stanley L. Hager, Edward P. Browne, Jack R. Reese, Don S. Wardius, Micah N. Moore
  • Patent number: 7828991
    Abstract: This invention relates to novel polyether polyols which are prepared by alkoxylation of renewable resource materials, and particularly cashew nutshell liquid (CNSL), and to a process for the preparation of these novel polyether polyols. This invention also relates to flexible polyurethane foams prepared from these long chain polyether polyols, and to a process for the production of these flexible polyurethane foams.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: November 9, 2010
    Assignee: Bayer MaterialScience LLC
    Inventors: Jack R. Reese, Micah N. Moore, Don S. Wardius, Stanley L. Hager
  • Publication number: 20100160469
    Abstract: This invention relates to polymer polyols comprising the free-radical polymerization product of a base polyol, at least one ethylenically unsaturated monomer, and, optionally, a preformed stabilizer, in the presence of at least one free-radical polymerization initiator and at least one chain transfer agent, in which the base polyol is a natural oil. A process for preparing these polymer polyols is also described. The present invention also relates to a polyurethane foam prepared from these polymer polyols and to a process for the preparation of these polyurethane foams.
    Type: Application
    Filed: December 23, 2008
    Publication date: June 24, 2010
    Inventors: Rick L. Adkins, Stanley L. Hager, Brian L. Neal, Jack R. Reese, Jiong England, Micah N. Moore
  • Patent number: 7538162
    Abstract: This invention relates to a one-stage process for the production of polyoxyalkylene containing polyols having equivalent weights of about 150 to about 6000 and functionalities of about 2 to 8. The process comprises (1) mixing (a) an organic compound having a hydroxyl functionality of about 2 to about 8 and an equivalent weight of about 35 to about 575, with (b) a hydroxyl functional compound having an equivalent weight of about 100 to about 6000 and a functionality of about 2 to 8; and (2) alkoxylating the mixture with (c) one or more alkylene oxides, in the presence of (d) one or more double metal cyanide catalysts. Suitable compounds to be used as (a) the organic compound having a hydroxyl functionality of about 2 to about 8 and an equivalent weight of about 35 to about 575 in the present invention include bisphenol-A, Bisphenol TMC, tetrabromobisphenol A, and novolak phenolic resins.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: May 26, 2009
    Assignee: Bayer MaterialScience LLC
    Inventors: Karl W. Haider, Stanley L. Hager, Jack R. Reese, II
  • Patent number: 7456229
    Abstract: This invention relates to a process for the production of rigid and semi-rigid foams at low isocyanate levels, and to the foams produced by this process. The process comprises reacting a polyisocyanate component with an isocyanate-reactive component, in the presence of at least one blowing agent, at least one surfactant and at least one catalyst. Suitable isocyanate-reactive components are characterized as having a solids content of at least 40% by weight, and an overall hydroxyl number of the remaining liquid, non-solids portion of at least 160. In addition, the isocyanate-reactive component comprises at least 50% by weight of a polymer polyol having a solids content of at least 30% by weight and in which the base polyol has a hydroxyl number of at least 75.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: November 25, 2008
    Assignee: Bayer MaterialScience LLC
    Inventors: Stanley L. Hager, Rick L. Adkins, Shriniwas S. Chauk
  • Publication number: 20080139685
    Abstract: This invention relates to novel polyether polyols which are prepared by alkoxylation of renewable resource materials, and particularly cashew nutshell liquid (CNSL), and to a process for the preparation of these novel polyether polyols. This invention also relates to flexible polyurethane foams prepared from these long chain polyether polyols, and to a process for the production of these flexible polyurethane foams.
    Type: Application
    Filed: December 8, 2006
    Publication date: June 12, 2008
    Inventors: Jack R. Reese, Micah N. Moore, Don S. Wardius, Stanley L. Hager
  • Publication number: 20070299153
    Abstract: This invention relates to low resilience, viscoelastic foams which have slower recovery and improved tear strength, and to a process for the production of these foams. The viscoelastic foams of the invention comprise the reaction product of a polyisocyanate with an isocyanate-reactive component, in the presence of a blowing agent, a surfactant and a catalyst. Suitable isocyanate-reactive components comprise at least about 5% by weight of at least one polyether polyol having about 2 to about 4 reactive hydroxyl groups per molecule, an equivalent weight of about 280 to about 2,000, and which is the alkoxylation product of an organic compound which contains at least two aromatic rings, contains from about 2 to about 4 Zerewitinoff active hydrogen atoms and has an equivalent weight of about 100 to about 575.
    Type: Application
    Filed: June 23, 2006
    Publication date: December 27, 2007
    Inventors: Stanley L. Hager, Karl W. Haider, Veril Jividen, Micah N. Moore, Dzung G. Dai
  • Publication number: 20070299234
    Abstract: This invention relates to a one-stage process for the production of polyoxyalkylene containing polyols having equivalent weights of about 150 to about 6000 and functionalities of about 2 to 8. The process comprises (1) mixing (a) an organic compound having a hydroxyl functionality of about 2 to about 8 and an equivalent weight of about 35 to about 575, with (b) a hydroxyl functional compound having an equivalent weight of about 100 to about 6000 and a functionality of about 2 to 8; and (2) alkoxylating the mixture with (c) one or more alkylene oxides, in the presence of (d) one or more double metal cyanide catalysts. Suitable compounds to be used as (a) the organic compound having a hydroxyl functionality of about 2 to about 8 and an equivalent weight of about 35 to about 575 in the present invention include bisphenol-A, Bisphenol TMC, tetrabromobisphenol A, and novolak phenolic resins.
    Type: Application
    Filed: June 23, 2006
    Publication date: December 27, 2007
    Inventors: Karl W. Haider, Stanley L. Hager, Jack R. Reese
  • Publication number: 20070282029
    Abstract: This invention relates to a process for the production of rigid and semi-rigid foams at low isocyanate levels, and to the foams produced by this process. The process comprises reacting a polyisocyanate component with an isocyanate-reactive component, in the presence of at least one blowing agent, at least one surfactant and at least one catalyst. Suitable isocyanate-reactive components are characterized as having a solids content of at least 40% by weight, and an overall hydroxyl number of the remaining liquid, non-solids portion of at least 160. In addition, the isocyanate-reactive component comprises at least 50% by weight of a polymer polyol having a solids content of at least 30% by weight and in which the base polyol has a hydroxyl number of at least 75.
    Type: Application
    Filed: May 31, 2006
    Publication date: December 6, 2007
    Inventors: Stanley L. Hager, Rick L. Adkins, Shriniwas S. Chauk
  • Patent number: 7268170
    Abstract: This invention relates to novel foam modifiers which can be used to prepare flexible foams. These novel foam modifiers provide improved processability and improved properties of the resultant flexible foams. The present invention also relates to the process of preparing these flexible foams and to the resultant foams.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: September 11, 2007
    Assignee: Bayer MaterialScience LLC
    Inventors: Nathan L. Anderson, Veril C. Jividen, Stanley L. Hager
  • Patent number: 6855742
    Abstract: The present invention provides a high support (HS) and high support-high resilience (HS-HR) flexible polyurethane foams prepared by catalyzed reaction of one or more di- or polyisocyanates at an isocyanate index from about 70 to about 130 with: (a) a polyoxyalkylene polyol or polyoxyalkylene polyol blend having an average hydroxyl weight of at least about 1000 and an average primary hydroxyl content of at least about 25%; and (b) an effective amount of a blowing agent containing water; in the presence of from about 0.01 to about 0.5% parts by weight based on 100 parts by weight of said polyol component of a liquid hydrocarbon containing greater than 50% of polymerized butadiene. The high support (HS) and high support-high resilience (HS-HR) flexible polyurethane foams of the present invention have a reduced force to crush (FTC).
    Type: Grant
    Filed: January 28, 2003
    Date of Patent: February 15, 2005
    Assignee: Bayer Antwerp, N.V.
    Inventors: Stanley L. Hager, Utpal C. Adhikari
  • Publication number: 20040147627
    Abstract: The present invention provides a high support (HS) and high support-high resilience (HS-HR) flexible polyurethane foams prepared by catalyzed reaction of one or more di- or polyisocyanates at an isocyanate index from about 70 to about 130 with:
    Type: Application
    Filed: January 28, 2003
    Publication date: July 29, 2004
    Inventors: Stanley L. Hager, Utpal C. Adhikari
  • Patent number: 6491846
    Abstract: This invention relates to a process for the in-situ production of a blend of a polyether monol and a polyether polyol. This process comprises introducing a monol (Si) and a double metal cyanide (DMC) catalyst into a reaction vessel, feeding an epoxide mixture into the vessel and allowing the epoxide to react with the initial starter and continuing to polymerize by feeding epoxide until the equivalent weight of the monol reaches the desired level, then continuously adding a polyfunctional starter (Sc) to the reaction vessel while continuing to feed an epoxide mixture, completing addition of the starter, and allowing the mixture to continue to polymerize until the resultant blend of polyether monol and polyether polyol has an average equivalent weight of from about 350 to about 750, and an average functionality of from about 2 to about 4. In-situ polymerized blends of a polyether monol and a polyether polyol are also part of the present invention.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: December 10, 2002
    Assignee: Bayer Antwerpen, N.V.
    Inventors: Jack R. Reese, II, Stanley L. Hager
  • Patent number: 6391935
    Abstract: Viscoelastic foams and a process for making them are disclosed. The foams are produced with a unique isocyanate-reactive mixture that includes a low equivalent weight polyol and from about 15 to about 70 wt. % of a polyester or polyoxyalkylene monol having a number average equivalent weight greater than about 1000. The monol is the key to formulating excellent viscoelastic foams over a broad range of processing conditions and isocyanate indices. A “reactive” monol gives TDI-based viscoelastic foams with improved “hand feel” and reduced levels of residual toluenediamines.
    Type: Grant
    Filed: January 31, 2000
    Date of Patent: May 21, 2002
    Assignee: Bayer Antwerp, N.V.
    Inventors: Stanley L. Hager, Veril C. Jividen, Sebastien P. Triouleyre, Faouzi Joulak
  • Patent number: 5652279
    Abstract: Polyoxyalkylene polyether polyols suitable for preparation of flexible polyurethane foams are prepared by oxyalkylating an aqueous solution of one or more polyhydric, hydroxyl-functional solid initiators under conditions where both water as well as initiator are oxyalkylated. The polyols have calculated functionalities of between about 2.2 and 4.0 and hydroxyl numbers in the range of 10 to 180. The polyols may be used to prepare soft, high resiliency polyurethane flexible foams at low isocyanate indexes.
    Type: Grant
    Filed: October 21, 1996
    Date of Patent: July 29, 1997
    Assignee: ARCO Chemical Technology, L.P.
    Inventors: Stanley L. Hager, James E. Knight, Gregory F. Helma, Ben J. Argento
  • Patent number: 5648559
    Abstract: High resilience polyurethane foams exhibiting little or no shrinkage may be prepared from low unsaturation double metal cyanide catalyzed polyoxyalkylene polyols in amounts greater than 20 weight percent of the total polyol component, when low unsaturation poly(oxypropylene/oxyethylene) random polyols having less than 35 weight percent of an all polyoxypropylene block catalyzed by double metal cyanide catalysts and one or more external random polyoxypropylene/polyoxyethylene blocks each containing 2 weight percent or more oxyethylene moieties, and an unsaturation of less than 0.02 meq/g are employed.
    Type: Grant
    Filed: October 21, 1996
    Date of Patent: July 15, 1997
    Assignee: Arco Chemical Technology, L.P.
    Inventor: Stanley L. Hager
  • Patent number: 5605939
    Abstract: High resilience polyurethane foams exhibiting little or no shrinkage may be prepared from low unsaturation double metal cyanide catalyzed polyoxyalkylene polyols in amounts greater than 20 weight percent of the total polyol component, when low unsaturation poly(oxypropylene/oxyethylene) random polyols having less than 35 weight percent of an all polyoxypropylene block catalyzed by double metal cyanide catalysts and one or more external random polyoxypropylene/polyoxyethylene blocks each containing 2 weight percent or more oxyethylene moieties, and an unsaturation of less than 0.02 meq/g are employed.
    Type: Grant
    Filed: January 26, 1996
    Date of Patent: February 25, 1997
    Assignee: Arco Chemical Technology, L.P.
    Inventor: Stanley L. Hager
  • Patent number: 5596059
    Abstract: Polyoxyalkylene polyether polyols suitable for preparation of flexible polyurethane foams are prepared by oxyalkylating an aqueous solution of one or more polyhydric, hydroxyl-functional solid initiators under conditions where both water as well as initiator are oxyalkylated. The polyols have calculated functionalities of between about 2.2 and 4.0 and hydroxyl numbers in the range of 10 to 180. The polyols may be used to prepare soft, high resiliency polyurethane flexible foams at low isocyanate indexes.
    Type: Grant
    Filed: July 26, 1995
    Date of Patent: January 21, 1997
    Assignee: ARCO Chemical Technology, L.P.
    Inventors: Stanley L. Hager, James E. Knight, Gregory F. Helma, Ben J. Argento
  • Patent number: 5171759
    Abstract: Polymer polyol compositions are provided which are useful for the production of flexible polyurethane foams. The polymer polyol compositions are composed of (1) a high functionality polyol, (2) a subsidiary polyalkylene oxide high in polyoxyethylene content and (3) a stably dispersed polymer. The latter component is formed by in situ polymerization of low molecular weight compounds within components (1) and/or (2) used in making the polymer polyol composition. The polymer polyol compositions provide stable and non-shrinking, free-rise foam at high water levels and over a wider crosslinker and index range permitting increased density and load latitude relative to commercial high resilience polymer polyols. A process for their use and foams and articles prepared therefrom are also provided.
    Type: Grant
    Filed: September 4, 1990
    Date of Patent: December 15, 1992
    Assignee: Arco Chemical Technology, L.P.
    Inventor: Stanley L. Hager