Patents by Inventor Stanley R. Clayton

Stanley R. Clayton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6948388
    Abstract: A sensing system includes a ring oscillator that emits electromagnetic radiation at a characteristic frequency. The ring oscillator comprises an odd number plurality of inverters that are electrically connected in series. The sensing system also comprises a temperature stabilized voltage source that is used to supply voltage to the inverters of the ring oscillator. A sensing load for sensing a change in a preselected environmental condition is operably connected to the ring oscillator. When the load senses the preselected environmental condition, the sensing load alters the characteristic frequency of the ring oscillator and hence the electromagnetic radiation as emitted by the ring oscillator. A pick-up antenna receives the electromagnetic radiation as emitted by the ring oscillator and detection electronics, operably coupled to the pick-up antenna, measure the frequency of the electromagnetic radiation as received by the pick-up antenna.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: September 27, 2005
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Stanley R. Clayton, Stephen D. Russell, Mark R. Roser, Richard L. Waters
  • Patent number: 6709976
    Abstract: The invention describes an improved method of fabricating trench structures. This method enhances trench structure reliability by reducing dielectric breakdown in high voltage applications, for example. The invention uses etching and thermal oxidation techniques to round and smooth the corners at the bottom of the trench structure. The smoothing of the trench corners reduces the electrical fields that cause insulator breakdown.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: March 23, 2004
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Nackieb M. Kamin, Stephen D. Russell, Stanley R. Clayton, Shannon D. Kasa
  • Patent number: 6165801
    Abstract: A method for the fabrication of active semiconductor and high-temperature perconducting devices on the same substrate to form a monolithically integrated semiconductor-superconductor (MISS) structure is disclosed. A common insulating substrate, preferably sapphire or yttria-stabilized zirconia, is used for deposition of semiconductor and high-temperature superconductor substructures. Both substructures are capable of operation at a common temperature of at least 77 K. The separate semiconductor and superconductive regions may be electrically interconnected by normal metals, refractory metal silicides, or superconductors. Circuits and devices formed in the resulting MISS structures display operating characteristics which are equivalent to those of circuits and devices prepared on separate substrates.
    Type: Grant
    Filed: November 18, 1999
    Date of Patent: December 26, 2000
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Michael J. Burns, Paul R. de la Houssaye, Graham A. Garcia, Stephen D. Russell, Stanley R. Clayton, Andrew T. Barfknecht
  • Patent number: 6051846
    Abstract: A method for the fabrication of active semiconductor and high-temperature superconducting device of the same substrate to form a monolithically integrated semiconductor-superconductor (MISS) structure is disclosed. A common insulating substrate, preferably sapphire or yttria-stabilized zirconia, is used for deposition of semiconductor and high-temperature superconductor substructures. Both substructures are capable of operation at a common temperature of at least 77 K. The separate semiconductor and superconductive regions may be electrically interconnected by normal metals, refractory metal silicides, or superconductors. Circuits and devices formed in the resulting MISS structures display operating characteristics which are equivalent to those of circuits and devices prepared on separate substrates.
    Type: Grant
    Filed: April 1, 1993
    Date of Patent: April 18, 2000
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Michael J. Burns, Paul R. de la Houssaye, Graham A. Garcia, Stephen D. Russell, Stanley R. Clayton, Andrew T. Barfknecht
  • Patent number: 5998294
    Abstract: A method is provided for improving silicide formation, and the electrical ntact provided thereby, on non-planar silicon structures. In this method, a semiconductor device structure is initially formed having non-planar surface regions. A metal layer is deposited on the non-planar surfaces. The metal deposition process step is followed by an off-axis implantation of non-dopant ions, causing a mixing of the metal and silicon atoms at the metal and non-planar silicon structure interface. The off-axes implantation also serves to disrupt the native silicon dioxide layer between the silicon and metal layers regions. Thermal processing is then used to form silicide on the non-planar surfaces of the semiconductor silicon structure.
    Type: Grant
    Filed: April 29, 1998
    Date of Patent: December 7, 1999
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Stanley R. Clayton, Stephen D. Russell, Oswald I. Csanadi, Shannon D. Kasa, Charles A. Young
  • Patent number: 4592004
    Abstract: The improved electrooptic signal processing relies upon matrix-matrix multiplication using twos complement arithmetic. A source of pulse collimated light illuminates two two-dimension spatial light modulators that operate in a reflective mode through a polarizing beamsplitter. Each of the spatial light modulators has a matrix of optically encoded information of numbers in the twos complement binary representation so that a mixed binary representation of signals is generated within the two-dimensioned photodetector array. The mixed binary representation signals are decoded to a twos complement binary representation or a decimal representation to be useful for more conventional processing techniques. The twos complement arithmetic when incorporated with the electrooptic architecture provides for a convenient means for handling bipolar numbers, avoids the need for matrix partitioning when the matrices are real and offers a means to improve accuracy over conventional optical analog techniques.
    Type: Grant
    Filed: May 21, 1984
    Date of Patent: May 27, 1986
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Richard P. Bocker, Stanley R. Clayton, Keith Bromley
  • Patent number: H1744
    Abstract: A temperature measuring device comprises a ring oscillator having a nominal oscillating frequency positioned at a location where temperature is to be measured. The ring oscillator emits electromagnetic radiation to an antenna located at a convenient distance from the ring oscillator. The antenna transforms the electromagnetic radiation into an electrical signal. A receiver receives the electrical signal and measures the frequency of the electrical signal to determine the corresponding temperature. The temperature may then be visually monitored from a display or electronically monitored by other devices.
    Type: Grant
    Filed: September 21, 1995
    Date of Patent: August 4, 1998
    Inventors: Stanley R. Clayton, Mark R. Roser, Stephen D. Russell, Randy L. Shimabukuro