Patents by Inventor Stanley R. Levine

Stanley R. Levine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5945166
    Abstract: A near-net, complex shaped ceramic fiber reinforced silicon carbide based composite bodies with graded compositions and stress zones is disclosed. To provide the composite a fiber preform is first fabricated and an interphase is applied by chemical vapor infiltration, sol-gel or polymer processes. This first body is further infiltrated with a polymer mixture containing carbon, and/or silicon carbide, and additional oxide, carbide, or nitride phases forming a second body. One side of the second body is spray coated or infiltrated with slurries containing high thermal expansion and oxidation resistant, crack sealant phases and the other side of this second body is coated with low expansion phase materials to form a third body. This third body consisting of porous carbonaceous matrix surrounding the previously applied interphase materials, is then infiltrated with molten silicon or molten silicon-refractory metal alloys to form a fourth body.
    Type: Grant
    Filed: December 30, 1997
    Date of Patent: August 31, 1999
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Mrityunjay Singh, Stanley R. Levine, James A. Smialek
  • Patent number: 5256610
    Abstract: Oxides having a composition of (Ba.sub.1-x Sr.sub.x)O--Al.sub.2 O.sub.3 --2SiO.sub.2 are used as sintering aids for producing an improved silicon nitride ceramic material. The x must be greater than 0 to insure the formation of the stable monoclinic celsian glass phase.
    Type: Grant
    Filed: November 27, 1992
    Date of Patent: October 26, 1993
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Narottam P. Bansal, Stanley R. Levine, William A. Sanders
  • Patent number: 4451496
    Abstract: A base layer of an oxide dispersed, metallic alloy (cermet) is arc-plasma sprayed onto a substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use. A top layer of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then arc-plasma sprayed onto the base layer. A heat treatment is used to improve the bonding. The base layer serves as an inhibitor to interdiffusion between the protective top layer and the substrate. Otherwise, the protective top layer would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.
    Type: Grant
    Filed: January 7, 1983
    Date of Patent: May 29, 1984
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Michael A. Gedwill, Stanley R. Levine, Thomas K. Glasgow
  • Patent number: 4446199
    Abstract: A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.
    Type: Grant
    Filed: July 30, 1982
    Date of Patent: May 1, 1984
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Michael A. Gedwill, Stanley R. Levine, Thomas K. Glasgow
  • Patent number: 4255495
    Abstract: The object of the invention is to provide a thermal barrier coating system for protecting metal surfaces at high temperature in normally corrosive environments.The thermal barrier coating system includes a metal alloy bond coating, the alloy containing nickel, cobalt, iron, or a combination of these metals. The system further includes a corrosion resistant thermal barrier oxide coating containing at least one alkaline earth silicate.The preferred oxides are calcium silicate, barium silicate, magnesium silicate, or combinations of these silicates.
    Type: Grant
    Filed: October 31, 1979
    Date of Patent: March 10, 1981
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Stanley R. Levine, Robert A. Miller, Philip E. Hodge
  • Patent number: 3931447
    Abstract: Fused silicide coatings for protecting niobium alloy substrates are modified by providing dispersed nucleation sites in the form of discrete particles in the coating. The discrete particles have a thermal expansion coefficient lower than that of the fused silicide material. This alters the microstructure and reduces the thermal expansion coefficient of the coating so as to minimize the number of tensile cracks.
    Type: Grant
    Filed: May 4, 1973
    Date of Patent: January 6, 1976
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: Salvatore J. Grisaffe, Stanley R. Levine