Patents by Inventor Stanley Roth

Stanley Roth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11931729
    Abstract: The present disclosure provides a method of forming a selective catalytic reduction (SCR) catalyst, the method including receiving a first iron-promoted zeolite having a first iron content, and treating the iron-promoted zeolite with additional iron in an ion exchange step to form a second iron-promoted zeolite with a second iron content, the second iron content being higher than the first iron content. A selective catalytic reduction (SCR) catalyst composition including an ironpromoted zeolite having at least about 6 weight percent iron, based on total weight of the ironpromoted zeolite, wherein the iron content of the zeolite was added to the zeolite in at least two separate steps is also provided herein.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: March 19, 2024
    Assignee: BASF CORPORATION
    Inventors: Jeff H. Yang, Stanley A. Roth, Robin M. Huff
  • Publication number: 20240068387
    Abstract: The present disclosure relates to a process for preparing a catalyst for the selective catalytic reduction of nitrogen oxide. The process includes providing a zeolitic material comprising SiO2 and X2O3 in its framework structure, wherein X is a trivalent element; subjecting the zeolitic material to an ion exchange procedure with one or more copper (II) containing compounds; preparing a slurry comprising the Cu ion-exchanged zeolitic material, one or more iron (II) and/or iron (III) containing compounds, and a solvent system; providing a substrate and coating the slurry onto the substrate; and calcining the coated substrate. Furthermore, the present disclosure relates to a catalyst for the selective catalytic reduction of nitrogen oxide, an exhaust gas treatment system for the treatment of exhaust gas exiting from an internal combustion engine, and a method for the selective catalytic reduction of nitrogen oxides.
    Type: Application
    Filed: December 8, 2021
    Publication date: February 29, 2024
    Inventors: Jeff H. Yang, Wen-Mei Xue, Stanley A. Roth
  • Publication number: 20240060441
    Abstract: The present disclosure provides a catalyst composition comprising a catalytically active platinum group metal (PGM) component disposed on or impregnated in a magnetic ferrite support material, wherein the magnetic ferrite support material is capable of inductive heating in response to an applied alternating electromagnetic field. Further provided are catalyst articles comprising such compositions, and components comprising such catalyst articles, and further comprising a conductor associated with the catalyst article for receiving current and generating an alternating electromagnetic field in response thereto, wherein the conductor is positioned such that the generated alternating electromagnetic field is applied to at least a portion of the catalyst composition, inductively heating the catalyst composition directly at the catalytic site. Also provided are exhaust gas treatment systems including such components and/or articles, and methods of treating emissions utilizing such components and systems.
    Type: Application
    Filed: October 22, 2021
    Publication date: February 22, 2024
    Applicant: BASF CORPORATION
    Inventors: Matthew T. Caudle, Stanley A. Roth
  • Patent number: 11896962
    Abstract: An oxidation catalyst composite, methods, and systems for the treatment of exhaust gas emissions from a diesel engine are described. More particularly, an oxidation catalyst composite including a first washcoat comprising a zeolite, Pt, and first refractory metal oxide support containing manganese, a second washcoat comprising a second refractory metal oxide support, a Pt component and a Pd component, and a third washcoat comprising palladium and a rare earth oxide component is described.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: February 13, 2024
    Assignee: BASF Corporation
    Inventors: Shiang Sung, Stanley A. Roth, Karifala Dumbuya, Susanne Stiebels, Claudia Zabel, Olga Gerlach, Andreas Sundermann
  • Publication number: 20240033717
    Abstract: The present disclosure relates to a process for preparing a catalyst for the selective catalytic reduction of nitrogen oxide. The process includes providing a zeolitic material including SiO2 and X2O3 in its framework structure, wherein X is a trivalent element; subjecting the zeolitic material to an ion exchange procedure with one or more iron (II) and/or iron (III) containing compounds; preparing a slurry including the Fe ion-exchanged zeolitic material, one or more copper (II) containing compounds, and a solvent system; providing a substrate and coating the slurry onto the substrate; and calcining the coated substrate. Furthermore, the present disclosure relates to a catalyst for the selective catalytic reduction of nitrogen oxide, an exhaust gas treatment system for the treatment of exhaust gas exiting from an internal combustion engine, and a method for the selective catalytic reduction of nitrogen oxides.
    Type: Application
    Filed: December 8, 2021
    Publication date: February 1, 2024
    Inventors: Jeff H. Yang, Wen-Mei Xue, Stanley A. Roth
  • Publication number: 20230356198
    Abstract: The disclosure provides a catalyst composition that includes a catalytic material and a magnetic ferrite compound. The magnetic ferrite compound can be pretreated, for example, by heating prior to incorporation within the catalyst composition. The magnetic ferrite compound may include iron, and one or more additional metals including zinc, cobalt, nickel, yttrium, manganese, copper, barium, strontium, scandium, and lanthanum. The disclosure also includes a system and method for heating the catalyst composition, which employs a conductor for receiving current and generating an alternating magnetic field in response thereto.
    Type: Application
    Filed: October 5, 2021
    Publication date: November 9, 2023
    Applicant: BASF CORPORATION
    Inventors: Matthew T. Caudle, Stanley A. Roth
  • Patent number: 11724248
    Abstract: The present disclosure relates to copper-containing molecular sieve catalysts that are highly suitable for the treatment of exhaust containing NOx pollutants. The copper-containing molecular sieve catalysts contain ion-exchanged copper as Cu+2 and Cu(OH)+1, and DRIFT spectroscopy of the catalyst exhibits perturbed T-O-T vibrational peaks corresponding to the Cu+2 and Cu(OH)+1. In spectra taken of the catalytic materials, a ratio of the Cu+2 to the Cu(OH)+1 peak integration areas preferably can be ?1. The copper-containing molecular sieve catalysts are aging stable such that the peak integration area percentage of the Cu+2 peak (area Cu+2/(area Cu+2+area Cu(OH)+1)) increases by ?20% upon aging at 800° C. for 16 hours in the presence of 10% H2O/air, compared to the fresh state.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: August 15, 2023
    Assignee: BASF Corporation
    Inventors: Wen-Mei Xue, Xiaofan Yang, Haiyang Zhu, Stanley Roth, Jeff Yang, Subramanian Prasad, Ahmad Moini
  • Patent number: 11713705
    Abstract: A nitrous oxide (N2O) removal catalyst composite is provided, comprising a N2O removal catalytic material on a substrate, the catalytic material comprising a rhodium (Rh) component supported on a ceria-based support, wherein the catalyst composite has a H2-consumption peak of about 100° C. or less as measured by hydrogen temperature-programmed reduction (H2-TPR). Methods of making and using the same are also provided.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: August 1, 2023
    Assignee: BASF CORPORATION
    Inventors: Yuejin Li, Xiaolai Zheng, Stanley Roth, Olga Gerlach, Andreas Sundermann
  • Patent number: 11648534
    Abstract: The present invention provides an oxidation catalyst composition suitable for at least partial conversion of gaseous hydrocarbon emissions, e.g., methane. The oxidation catalyst composition includes at least one platinum group metal (PGM) component supported onto a porous zirconia-containing material that provides an effect on hydrocarbon conversion activity. The porous zirconia-containing material is at least 90% by weight in the monoclinic phase. Furthermore, the PGM component can comprise at least one platinum group metal in the form of colloidally deposited nanoparticles. The oxidation catalyst composition can be used in the treatment of emissions from lean compressed natural gas engines.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: May 16, 2023
    Assignee: BASF CORPORATION
    Inventors: Xinyi Wei, Olga Gerlach, Emily Schulman, Andreas Sundermann, Stanley Roth, Limiao An
  • Patent number: 11534736
    Abstract: Emissions treatment systems of combustion engines are provided, which comprise a platinum-containing catalyst that is degreened during production, which is before exposure to operating conditions of a vehicle having a diesel engine. The platinum-containing catalyst, in the form of a platinum component on a high surface area refractory metal oxide support, exhibits a vibration frequency of about 2085 to about 2105 cm?1 as measured by CO-DRIFTS. Such catalytic material is essentially-free of platinum oxide species found at greater than about 2110 cm?1 as measured by CO-DRIFTS. Such catalysts can provide excellent and consistent conversion of nitrogen oxide (NO) to nitrogen dioxide (NO2).
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: December 27, 2022
    Assignee: BASF CORPORATION
    Inventors: Xinyi Wei, Stanley A. Roth, Haiyang Zhu
  • Patent number: 11448110
    Abstract: Certain selective catalytic reduction (SCR) articles, systems and methods provide for high NOx conversion while at the same time low N2O formation. The articles, systems and methods are suitable for instance for the treatment of exhaust gas of diesel engines. Certain articles have zoned coatings containing copper-containing molecular sieves disposed thereon, where for example a concentration of catalytic copper in an upstream zone is lower than the concentration of catalytic copper in a downstream zone.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: September 20, 2022
    Assignee: BASF Corporation
    Inventors: Wen-Mei Xue, Jeff H. Yang, Stanley A. Roth, Kenneth E. Voss, Sandip D. Shah, Jaya L. Mohanan
  • Publication number: 20220280924
    Abstract: The present disclosure provides a method of forming a selective catalytic reduction (SCR) catalyst, the method including receiving a first iron-promoted zeolite having a first iron content, and treating the iron-promoted zeolite with additional iron in an ion exchange step to form a second iron-promoted zeolite with a second iron content, the second iron content being higher than the first iron content. A selective catalytic reduction (SCR) catalyst composition including an ironpromoted zeolite having at least about 6 weight percent iron, based on total weight of the ironpromoted zeolite, wherein the iron content of the zeolite was added to the zeolite in at least two separate steps is also provided herein.
    Type: Application
    Filed: August 12, 2020
    Publication date: September 8, 2022
    Applicant: BASF CORPORATION
    Inventors: Jeff H. Yang, Stanley A. Roth, Robin M. Huff
  • Publication number: 20220250044
    Abstract: An oxidation catalyst composite, methods, and systems for the treatment of exhaust gas emissions from a diesel engine are described. More particularly, an oxidation catalyst composite including a first washcoat layer comprising a Pt component and a Pd component, and a second washcoat layer including a refractory metal oxide support containing manganese, a zeolite, and a platinum component is described.
    Type: Application
    Filed: March 21, 2022
    Publication date: August 11, 2022
    Inventors: Shiang Sung, Stanley A. Roth, Claudia Zabel, Susanne Stiebels, Andreas Sundermann, Olga Gerlach
  • Publication number: 20220234032
    Abstract: An oxidation catalyst composite, methods, and systems for the treatment of exhaust gas emissions from a diesel engine are described. More particularly, an oxidation catalyst composite including a first washcoat layer comprising a Pt component and a Pd component, and a second washcoat layer including a refractory metal oxide support containing manganese, a zeolite, and a platinum component is described.
    Type: Application
    Filed: March 21, 2022
    Publication date: July 28, 2022
    Inventors: Shiang Sung, Stanley A. Roth, Claudia Zabel, Susanne Stiebels, Andreas Sundermann, Olga Gerlach
  • Patent number: 11344868
    Abstract: Certain selective catalytic reduction (SCR) articles, systems and methods provide for high NOx conversion while at the same time low N2O formation. The articles, systems and methods are suitable for instance for the treatment of exhaust gas of diesel engines. Certain articles have zoned coatings disposed thereon, for example, a zoned coating comprising an upstream zone comprising a coating layer comprising a steam-activated iron-containing molecular sieve and a downstream zone comprising a coating layer comprising a high copper-containing molecular sieve.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: May 31, 2022
    Assignee: BASF Corporation
    Inventors: Jeff H. Yang, Wen-Mei Xue, Stanley A. Roth, Kenneth E. Voss, Qi Fu, Subramanian Prasad, Barbara K. Slawski, Jaya L. Mohanan, Sandip D. Shah
  • Publication number: 20220143579
    Abstract: The invention relates to a selective ammonia oxidation catalysts comprising a platinum group metal and a support comprising TiO2 doped with 0-10% by weight of SiO2, WO3, ZrO2, Y2O3, La2O3, or a mixture thereof. The invention further comprises methods for the manufacture of the selective ammonia oxidation catalysts, and integrated catalyst systems comprising the selective ammonia oxidation catalysts for treating an exhaust gas stream.
    Type: Application
    Filed: April 8, 2020
    Publication date: May 12, 2022
    Inventors: Yu Fen HAO, Yuejin LI, Stanley A. ROTH, Jan Martin BECKER, Stefan MAURER
  • Patent number: 11311865
    Abstract: An oxidation catalyst composite, methods, and systems for the treatment of exhaust gas emissions from a diesel engine are described. More particularly, an oxidation catalyst composite including a first washcoat layer comprising a Pt component and a Pd component, and a second washcoat layer including a refractory metal oxide support containing manganese, a zeolite, and a platinum component is described.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: April 26, 2022
    Assignee: BASF Corporation
    Inventors: Shiang Sung, Stanley A Roth, Claudia Zabel, Susanne Stiebels, Andreas Sundermann, Olga Gerlach
  • Publication number: 20220010714
    Abstract: A nitrous oxide (N2O) removal catalyst composite is provided, comprising a N2O removal catalytic material on a substrate, the catalytic material comprising a rhodium (Rh) component supported on a ceria-based support, wherein the catalyst composite has a H2-consumption peak of about 100° C. or less as measured by hydrogen temperature-programmed reduction (H2-TPR). Methods of making and using the same are also provided.
    Type: Application
    Filed: September 23, 2021
    Publication date: January 13, 2022
    Inventors: Yuejin Li, Xiaolai Zheng, Stanley Roth, Olga Gerlach, Andreas Sundermann
  • Publication number: 20210388747
    Abstract: The present disclosure provides catalyst compositions for NOx conversion and catalytic articles incorporating such catalyst compositions. Certain catalyst compositions include a zeolite with a silica-to-alumina ratio from 5 to 20 and sufficient Cu exchanged into cation sites of the zeolite such that the zeolite has a Cu/Al ratio of 0.1 to 0.5 and a CuO loading of 1 to 15 wt. %; and a copper trapping component in a concentration in the range of 1 to 20 wt. %, the copper trapping component including a plurality of particles having a particle size of about 0.5 to 20 microns. Certain catalyst compositions include, as the copper trapping component, alumina present as a plurality of alumina particles with a D90 particle size distribution in the range of 0.5 microns to 20 microns.
    Type: Application
    Filed: October 24, 2019
    Publication date: December 16, 2021
    Applicant: BASF Corporation
    Inventors: Wen-Mei XUE, Ivan PETROVIC, Jeff H. YANG, Stanley A. ROTH, Yuejin LI
  • Patent number: 11149610
    Abstract: A nitrous oxide (N2O) removal catalyst composite is provided, comprising a N2O removal catalytic material on a substrate, the catalytic material comprising a rhodium (Rh) component supported on a ceria-based support, wherein the catalyst composite has a H2-consumption peak of about 100° C. or less as measured by hydrogen temperature-programmed reduction (H2-TPR). Methods of making and using the same are also provided.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: October 19, 2021
    Assignee: BASF Corporation
    Inventors: Yuejin Li, Xiaolai Zheng, Stanley Roth, Olga Gerlach, Andreas Sundermann