Patents by Inventor Stanley Williams

Stanley Williams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080237568
    Abstract: Methods of making nanometer-scale semiconductor structures with controlled size are disclosed. Semiconductor structures that include one or more nanowires are also disclosed. The nanowires can include a passivation layer or have a hollow tube structure.
    Type: Application
    Filed: April 2, 2007
    Publication date: October 2, 2008
    Inventors: Nobuhiko Kobayashi, Wei Wu, Duncan R. Stewart, Shashank Sharma, Shih-Yuan Wang, R. Stanley Williams
  • Publication number: 20080237886
    Abstract: Various embodiments of the present invention are directed to three-dimensional crossbar arrays. In one aspect of the present invention, a three-dimensional crossbar array includes a plurality of crossbar arrays, a first demultiplexer, a second demultiplexer, and a third demultiplexer. Each crossbar array includes a first layer of nanowires, a second layer of nanowires overlaying the first layer of nanowires, and a third layer of nanowires overlaying the second layer of nanowires. The first demultiplexer is configured to address nanowires in the first layer of nanowires of each crossbar array, the second demultiplexer is configured to address nanowires in the second layer of nanowires of each crossbar array, and the third demultiplexer is configured to supply a signal to the nanowires in the third layer of nanowires of each crossbar array.
    Type: Application
    Filed: March 28, 2007
    Publication date: October 2, 2008
    Inventors: Wei Wu, R. Stanley Williams, Warren Robinett, Gregory S. Snider, Zhaoning Yu, Shih-Yuan Wang, Duncan Stewart
  • Publication number: 20080225268
    Abstract: In one aspect of the present invention, an electric-field-enhancement structure is disclosed. The electric-field-enhancement structure includes a substrate and an ordered arrangement of dielectric particles having at least two adjacent dielectric particles spaced from each other a controlled distance. The controlled distance is selected so that when a resonance mode is excited in each of the at least two adjacent dielectric particles responsive to excitation electromagnetic radiation, each of the resonance modes interacts with each other to result in an enhanced electric field between the at least two adjacent dielectric particles. Other aspects of the present invention are electric-field-enhancement apparatuses that utilize the described electric-field-enhancement structures, and methods of enhancing an electric field between adjacent dielectric particles.
    Type: Application
    Filed: March 14, 2007
    Publication date: September 18, 2008
    Inventors: Mihail Sigalas, R. Stanley Williams, David A. Fattal, Shih-Yuan Wang, Raymond G. Beausoleil
  • Publication number: 20080224131
    Abstract: Classes of molecules are disclosed which can, for example, be used in molecular switches. The classes of molecules include at least three segments—an electronic donor (“D”), a switchable bridge (“B”), and an electronic acceptor (“A”)—chemically connected and linearly arranged (e.g., D-B-A). The electronic donor can be an aromatic ring system with at least one electron donating group covalently attached; an aromatic ring system with an electron withdrawing group covalently attached is usually employed as the electronic acceptor; and the switchable bridge can be a pi system that can be switched on or off using an external electric field.
    Type: Application
    Filed: April 21, 2008
    Publication date: September 18, 2008
    Applicant: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Sean X. Zhang, Zhang-Lin Zhou, Kent Vincent, R. Stanley Williams
  • Publication number: 20080218740
    Abstract: Embodiments of the present invention are related to nanowire-based devices that can be configured and operated as modulators, chemical sensors, and light-detection devices. In one aspect, a nanowire-based device includes a reflective member, a resonant cavity surrounded by at least a portion of the reflective member, and at least one nanowire disposed within the resonant cavity. The nanowire includes at least one active segment selectively disposed along the length of the nanowire to substantially coincide with at least one antinode of light resonating within the cavity. The active segment can be configured to interact with the light resonating within the cavity.
    Type: Application
    Filed: February 29, 2008
    Publication date: September 11, 2008
    Inventors: R. Stanley Williams, Shih-Yuan Wang, Philip J. Kuekes, Theodore I. Kamins, Duncan Stewart, Alexandre M. Bratkovski, Jason Blackstock, Zhiyong Li
  • Publication number: 20080204048
    Abstract: A sensor device and method for detecting the presence of an analyte in a fluid solution are disclosed. The sensor device system can comprise a substrate and an array of free-standing nanowires attached to the substrate. The array can include individual free-standing nanowires wherein each of the individual free-standing nanowires have a first end and a second end. The first end can, in some embodiments, be attached to the substrate and the second end unattached to the substrate. Such individual free-standing nanowires are configured for electrical communication with other individual free-standing nanowires through the first end. A chip or computer can be electrically coupled to the array of free-standing nanowires for receiving electrical information from the array of free-standing nanowires. In some embodiments a power source can be used to send current through the nanowire array.
    Type: Application
    Filed: November 17, 2006
    Publication date: August 28, 2008
    Inventors: James Stasiak, Paul H. McClelland, David E. Hackleman, Grant Pease, R. Stanley Williams, Kevin Peters
  • Publication number: 20080193359
    Abstract: Various embodiments of the present invention are directed to methods of forming single-crystal metal-silicide nanowires and resulting nanowire structures. In one embodiment of the present invention, a method of fabricating nanowires is disclosed. In the method, a number of nanowire-precursor members are formed. Each of the nanowire-precursor members includes a substantially single-crystal silicon region and a polycrystalline- metallic region. The substantially single-crystal silicon region and the polycrystalline-metallic region of each of the nanowire-precursor members is reacted to form corresponding substantially single-crystal metal-silicide nanowires. In another embodiment of the present invention, a nanowire structure is disclosed. The nanowire structure includes a substrate having an electrically insulating layer. A number of substantially single-crystal metal-silicide nanowires are positioned on the electrically insulating layer.
    Type: Application
    Filed: February 13, 2007
    Publication date: August 14, 2008
    Inventors: Zhaoning Yu, Zhiyong Li, Wei Wu, Shih-Yuan Wang, R. Stanley Williams
  • Publication number: 20080181558
    Abstract: One embodiment in accordance with the invention is an apparatus that can include an optical circuit wafer and an integrated circuit wafer. The optical circuit wafer and the integrated circuit wafer are bonded together by a wafer bonding process.
    Type: Application
    Filed: January 31, 2007
    Publication date: July 31, 2008
    Inventors: Peter G. Hartwell, Raymond Beausoleil, R. Stanley Williams, Duncan Stewart
  • Patent number: 7404981
    Abstract: A method is provided for printing electronic and opto-electronic circuits. The method comprises: (a) providing a substrate; (b) providing a film-forming precursor species; (c) forming a substantially uniform and continuous film of the film-forming precursor species on at least one side of the substrate, the film having a first electrical conductivity; and (d) altering portions of the film with at least one conductivity-altering species to form regions having a second electrical conductivity that is different than the first electrical conductivity, the regions thereby providing circuit elements. The method employs very simple and continuous processes, which make the time to produce a batch of circuits very short and leads to very inexpensive products, such as electronic memories (write once or rewriteable), electronically addressable displays, and generally any circuit for which organic electronics or opto-electronics are acceptable.
    Type: Grant
    Filed: April 21, 2003
    Date of Patent: July 29, 2008
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Xiao-An Zhang, R. Stanley Williams, Yong Chen
  • Patent number: 7388200
    Abstract: A sensing method includes exposing a nano-transducer having a controlled surface to a sample including at least one species. Adsorption of the species on the nano-transducer is transduced to a measurable signal as a function of time. Desorption of the species from the nano-transducer is also transduced to a measurable signal as a function of time. A residence time of the at least one species adsorbed on the nano-transducer is extracted from the measurable signals. The adsorption and desorption each define an individual measurable event.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: June 17, 2008
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Duncan R. Stewart, William M. Tong, R. Stanley Williams, Philip J. Kuekes, Sean Xiao-an Zhang, Kevin F. Peters, Kenneth J. Ward
  • Patent number: 7385691
    Abstract: Devices, systems, and methods for enhancing Raman spectroscopy and hyper-Raman are disclosed. A molecular analysis device for performing Raman spectroscopy comprises a substrate and a laser source disposed on the substrate. The laser source may be configured for emanating a laser radiation, which may irradiate an analyte disposed on a Raman enhancement structure. The Raman enhancement structure may be disposed on the substrate or apart from the substrate. The molecular analysis device also include a radiation receiver disposed on the substrate and configured for receiving a Raman scattered radiation, which may be generated by the irradiation of the analyte and Raman enhancement structure.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: June 10, 2008
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: M. Saif Islam, Shih-Yuan Wang, Wei Wu, Zhiyong Li, R. Stanley Williams
  • Publication number: 20080131047
    Abstract: A photonic interconnect system avoids high capacitance electric interconnects by using optical signals to communicate data between devices. The system can provide massively parallel information output by mapping logical addresses to frequency bands, so that modulation of a selected frequency band can encode information for a specific location corresponding to the logical address. Wavelength-specific directional couplers, modulators, and detectors for the photonic interconnect system can be efficiently fabricated at defects in a photonic bandgap crystal. The interconnect system can be used for both classical and quantum information processing.
    Type: Application
    Filed: January 11, 2008
    Publication date: June 5, 2008
    Inventors: Raymond G. Beausoleil, Philip J. Kuekes, William J. Munro, Timothy P. Spiller, R. Stanley Williams, Sean D. Barrett
  • Patent number: 7378539
    Abstract: Classes of molecules are disclosed which can, for example, be used in molecular switches. The classes of molecules include at least three segments—an electronic donor (“D”), a switchable bridge (“B”), and an electronic acceptor (“A”)—chemically connected and linearly arranged (e.g., D-B-A). The electronic donor can be an aromatic ring system with at least one electron donating group covalently attached; an aromatic ring system with an electron withdrawing group covalently attached is usually employed as the electronic acceptor; and the switchable bridge can be a pi system that can be switched on or off using an external electric field.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: May 27, 2008
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Sean X. Zhang, Zhang-Lin Zhou, Kent Vincent, R. Stanley Williams
  • Publication number: 20080116490
    Abstract: A sensing method includes exposing a nano-transducer having a controlled surface to a sample including at least one species. Adsorption of the species on the nano-transducer is transduced to a measurable signal as a function of time. Desorption of the species from the nano-transducer is also transduced to a measurable signal as a function of time. A residence time of the at least one species adsorbed on the nano-transducer is extracted from the measurable signals. The adsorption and desorption each define an individual measurable event.
    Type: Application
    Filed: October 19, 2006
    Publication date: May 22, 2008
    Inventors: Duncan R. Stewart, William M. Tong, R. Stanley Williams, Philip J. Kuekes, Sean Xiao-an Zhang, Kevin F. Peters, Kenneth J. Ward
  • Patent number: 7372562
    Abstract: A system for performing nanostructure-enhanced Raman spectroscopy (NERS) includes a radiation source, a radiation detector configured to detect Raman scattered radiation scattered by an analyte, and a container configured to provide a sealed enclosure. The NERS system further includes a turbulence generating device configured to generate random dynamic motion of a plurality of nanoparticles within the container. A method for performing NERS includes providing a container configured to provide a sealed enclosure, providing a plurality of nanoparticles each comprising a NERS-active material and an analyte within the container, causing random dynamic motion of the plurality of nanoparticles and the analyte, irradiating the plurality of nanoparticles and the analyte with radiation, and detecting Raman scattered radiation scattered by the analyte.
    Type: Grant
    Filed: October 17, 2005
    Date of Patent: May 13, 2008
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: M. Saif Islam, Shih-Yuan Wang, R. Stanley Williams
  • Patent number: 7368395
    Abstract: An imprinting apparatus and method of fabrication provide a mold having a pattern for imprinting. The apparatus includes a semiconductor substrate polished in a [110] direction. The semiconductor substrate has a (110) horizontal planar surface and vertical sidewalls of a wet chemical etched trench. The sidewalls are aligned with and therefore are (111) vertical lattice planes of the semiconductor substrate. The semiconductor substrate includes a plurality of vertical structures between the sidewalls, wherein the vertical structures may be nano-scale spaced apart. The method includes wet etching a trench with spaced apart (111) vertical sidewalls in an exposed portion of the (110) horizontal surface of the semiconductor substrate along (111) vertical lattice planes. A chemical etching solution is used that etches the (111) vertical lattice planes slower than the (110) horizontal lattice plane. The method further includes forming the imprinting mold.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: May 6, 2008
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: M. Saif Islam, Gun Young Jung, Yong Chen, R. Stanley Williams
  • Publication number: 20080100345
    Abstract: Various method and system embodiments of the present invention are directed to implementing serial logic gates using nanowire-crossbar arrays with spintronic devices located at nanowire-crossbar junctions. In one embodiment of the present invention, a nanowire-crossbar array comprises a first nanowire and a number of substantially parallel control nanowires positioned so that each control nanowire overlaps the first nanowire. The nanowire-crossbar array includes a number of spintronic devices. Each spintronic device is configured to connect one of the control nanowires to the first nanowire and operate as a latch for controlling signal transmissions between the control nanowire and the first nanowire.
    Type: Application
    Filed: October 31, 2006
    Publication date: May 1, 2008
    Inventors: Alexandre M. Bratkovski, Wei Wu, Gregory S. Snider, R. Stanley Williams
  • Publication number: 20080094583
    Abstract: Techniques for modifying a visible projecting image are described. The technique includes using non-visible light to control optical properties of independent regions of an active screen. The non-visible light is capable of directly interacting with the regions of the active screen to modify an optical property of the regions of the active screen.
    Type: Application
    Filed: October 19, 2006
    Publication date: April 24, 2008
    Inventors: R. Stanley Williams, Philip J. Kuekes
  • Publication number: 20080094051
    Abstract: A demultiplexed nanowire sensor array for detecting different chemical and biological species are provided, comprising a sensor array and a demultiplexer array. Methods of detecting at least two chemical and/or biological species are also provided, using the demultiplexed nanowire sensor array.
    Type: Application
    Filed: October 19, 2006
    Publication date: April 24, 2008
    Inventors: R. Stanley Williams, Philip J. Kuekes, Yong Chen
  • Publication number: 20080093217
    Abstract: A method of forming a plurality of NERS-active structures is disclosed. Particularly, a substrate having a surface and a liquid including nanoparticles is deposited on at least a portion of the surface of the substrate. At least one electric field may be generated proximate to the surface and at least a portion of the nanoparticles may be arranged via the electric field. A system includes at least two electrodes configured for producing at least one electric field for substantially arranging nanoparticles substantially according to a selected pattern. A NERS-active structure includes a substrate and a plurality of features located at predetermined positions on a surface of the substrate and at least one NERS-active nanoparticle at least partially embedded therein.
    Type: Application
    Filed: October 20, 2006
    Publication date: April 24, 2008
    Inventors: Wei Wu, R. Stanley Williams, Shih-Yuan Wang, Philip J. Kuekes, Zhiyong Li