Patents by Inventor Stefan Andrae

Stefan Andrae has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10563180
    Abstract: Described herein are non-natural NAD+-dependent alcohol dehydrogenases (ADHs) capable of at least two fold greater conversion of methanol or ethanol to formaldehyde or acetaldehyde, respectively, as compared to its unmodified counterpart. Nucleic acids encoding the non-natural alcohol dehydrogenases, as well as expression constructs including the nucleic acids, and engineered cells comprising the nucleic acids or expression constructs are described. Also described are engineered cells expressing a non-natural NAD+-dependent alcohol dehydrogenase, optionally include one or more additional metabolic pathway transgene(s), methanol metabolic pathway genes, target product pathway genes, cell culture compositions including the cells, methods for promoting production of the target product or intermediate thereof from the cells, compositions including the target product or intermediate, and products made from the target product or intermediate.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: February 18, 2020
    Assignee: Genomatica, Inc.
    Inventors: Stefan Andrae, Michael Patrick Kuchinskas, Jingyi Li, Harish Nagarajan, Priti Pharkya
  • Publication number: 20190300919
    Abstract: Provided herein is a non-naturally occurring microbial organism having a methanol metabolic pathway that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as adipate, 6-aminocaproate, hexamethylenediamine or caprolactam. Also provided herein are methods for using such an organism to produce adipate, 6-aminocaproate, hexamethylenediamine or caprolactam.
    Type: Application
    Filed: November 1, 2018
    Publication date: October 3, 2019
    Inventors: Anthony P. Burgard, Robin E. Osterhout, Stephen J. Van Dien, Cara Ann Tracewell, Priti Pharkya, Stefan Andrae
  • Publication number: 20190106701
    Abstract: Provided herein is a non-naturally occurring microbial organism having a methanol metabolic pathway that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as 3-hydroxyisobutyrate or MAA. Also provided herein are methods for using such an organism to produce 3-hydroxyisobutyrate or MAA.
    Type: Application
    Filed: May 14, 2018
    Publication date: April 11, 2019
    Inventors: Anthony P. Burgard, Robin E. Osterhout, Stephen J. Van Dien, Cara Ann Tracewell, Priti Pharkya, Stefan Andrae
  • Publication number: 20190032096
    Abstract: Provided herein is a non-naturally occurring microbial organism having a methanol metabolic pathway that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as succinate. Also provided herein are methods for using such an organism to produce succinate.
    Type: Application
    Filed: February 23, 2018
    Publication date: January 31, 2019
    Inventors: Anthony P. Burgard, Robin E. Osterhout, Stephen J. Van Dien, Cara Ann Tracewell, Priti Pharkya, Stefan Andrae
  • Publication number: 20190017078
    Abstract: Provided herein are non-naturally occurring microbial organisms having a formaldehyde fixation pathway and a formate assimilation pathway, which can further include a methanol metabolic pathway, a methanol oxidation pathway, a hydrogenase and/or a carbon monoxide dehydrogenase. These microbial organisms can further include a butadiene, 1,3-butanediol, crotyl alcohol or 3-buten-2-ol pathway. Additionally provided are methods of using such microbial organisms to produce butadiene, 1,3-butanediol, crotyl alcohol or 3-buten-2-ol.
    Type: Application
    Filed: February 7, 2018
    Publication date: January 17, 2019
    Inventors: Anthony P. Burgard, Robin E. Osterhout, Priti Pharkya, Stefan Andrae
  • Patent number: 10150976
    Abstract: Provided herein is a non-naturally occurring microbial organism having a methanol metabolic pathway that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as adipate, 6-aminocaproate, hexamethylenediamine or caprolactam. Also provided herein are methods for using such an organism to produce adipate, 6-aminocaproate, hexamethylenediamine or caprolactam.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: December 11, 2018
    Assignee: Genomatica, Inc.
    Inventors: Anthony P. Burgard, Robin E. Osterhout, Stephen J. Van Dien, Cara Ann Tracewell, Priti Pharkya, Stefan Andrae
  • Publication number: 20180327788
    Abstract: Provided herein is a non-naturally occurring microbial organism having a methanol metabolic pathway that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as 1,2-propanediol, n-propanol, 1,3-propanediol or glycerol. Also provided herein are methods for using such an organism to produce 1,2-propanediol, n-propanol, 1,3-propanediol or glycerol.
    Type: Application
    Filed: January 17, 2018
    Publication date: November 15, 2018
    Inventors: Anthony P. Burgard, Robin E. Osterhout, Stephen J. Van Dien, Cara Ann Tracewell, Priti Pharkya, Stefan Andrae
  • Patent number: 10000758
    Abstract: Provided herein is a non-naturally occurring microbial organism having a methanol metabolic pathway that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as 3-hydroxyisobutyrate or MAA. Also provided herein are methods for using such an organism to produce 3-hydroxyisobutyrate or MAA.
    Type: Grant
    Filed: April 19, 2016
    Date of Patent: June 19, 2018
    Assignee: Genomatica, Inc.
    Inventors: Anthony P. Burgard, Robin E. Osterhout, Stephen J. Van Dien, Cara Ann Tracewell, Priti Pharkya, Stefan Andrae
  • Patent number: 9932611
    Abstract: Provided herein is a non-naturally occurring microbial organism having a methanol metabolic pathway that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as succinate. Also provided herein are methods for using such an organism to produce succinate.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: April 3, 2018
    Assignee: Genomatica, Inc.
    Inventors: Anthony P. Burgard, Robin E. Osterhout, Stephen J. Van Dien, Cara Ann Tracewell, Priti Pharkya, Stefan Andrae
  • Patent number: 9909150
    Abstract: Provided herein is a non-naturally occurring microbial organism having a methanol metabolic pathway that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as 1,2-propanediol, n-propanol, 1,3-propanediol or glycerol. Also provided herein are methods for using such an organism to produce 1,2-propanediol, n-propanol, 1,3-propanediol or glycerol.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: March 6, 2018
    Assignee: Genomatica, Inc.
    Inventors: Anthony P. Burgard, Robin E. Osterhout, Stephen J. Van Dien, Cara Ann Tracewell, Priti Pharkya, Stefan Andrae
  • Publication number: 20180030484
    Abstract: Provided herein is a non-naturally occurring microbial organism having a methanol metabolic pathway that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as 1,4-butanediol (BDO). Also provided herein are methods for using such an organism to produce BDO.
    Type: Application
    Filed: April 14, 2017
    Publication date: February 1, 2018
    Inventors: Anthony P. Burgard, Robin E. Osterhout, Stephen J. Van Dien, Cara Ann Tracewell, Priti Pharkya, Stefan Andrae
  • Publication number: 20170183694
    Abstract: The invention provides non-naturally occurring microbial organisms having a 4-hydroxybutyrate, gamma-butyrolactone, 1,4-butanediol, 4-hydroxybutanal, 4-hydroxybutyryl-CoA and/or putrescine pathway and being capable of producing 4-hydroxybutyrate, wherein the microbial organism comprises one or more genetic modifications. The invention additionally provides methods of producing 4-hydroxybutyrate, gamma-butyrolactone, 1,4-butanediol, 4-hydroxybutanal, 4-hydroxybutyryl-CoA and/or putrescine or related products using the microbial organisms.
    Type: Application
    Filed: June 23, 2016
    Publication date: June 29, 2017
    Inventors: Priti PHARKYA, Anthony P. BURGARD, Stephen J. VAN DIEN, Robin E. OSTERHOUT, Mark J. BURK, John D. TRAWICK, Michael P. KUCHINSKAS, Brian STEER, Stefan ANDRAE, Amit SHAH
  • Publication number: 20170159075
    Abstract: The invention provides non-naturally occurring microbial organisms containing enzymatic pathways and/or metabolic modifications for enhancing carbon flux through acetyl-CoA. In some embodiments, the microbial organisms having such pathways also include pathways for generating reducing equivalents, formaldehyde fixation and/or formate assimilation. The enhanced carbon flux through acetyl-CoA, in combination with pathways for generating reducing equivalents, formaldehyde fixation and/or formate assimilation can, in some embodiments, be used for production of a bioderived compound. Accordingly, in some embodiments, the microbial organisms of the invention can include a pathway capable of producing a bioderived compound of the invention.
    Type: Application
    Filed: November 25, 2014
    Publication date: June 8, 2017
    Inventors: Robin E. OSTERHOUT, Anthony P. BURGARD, Priti PHARKYA, Stefan ANDRAE
  • Patent number: 9657316
    Abstract: Provided herein is a non-naturally occurring microbial organism having a methanol metabolic pathway that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as 1,4-butanediol (BDO). Also provided herein are methods for using such an organism to produce BDO.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: May 23, 2017
    Assignee: Genomatica, Inc.
    Inventors: Anthony P. Burgard, Robin E. Osterhout, Stephen J. Van Dien, Cara Ann Tracewell, Priti Pharkya, Stefan Andrae
  • Publication number: 20170073691
    Abstract: Provided herein is a non-naturally occurring microbial organism having a methanol metabolic pathway that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as 3-hydroxyisobutyrate or MAA. Also provided herein are methods for using such an organism to produce 3-hydroxyisobutyrate or MAA.
    Type: Application
    Filed: April 19, 2016
    Publication date: March 16, 2017
    Inventors: Anthony P. BURGARD, Robin E. OSTERHOUT, Stephen J. VAN DIEN, Cara Ann TRACEWELL, Priti PHARKYA, Stefan ANDRAE
  • Publication number: 20160376600
    Abstract: The invention provides non-naturally occurring microbial organisms having a formaldehyde fixation pathway, a formate assimilation pathway, and/or a methanol metabolic pathway in combination with a fatty alcohol, fatty aldehyde, fatty acid or isopropanol pathway, wherein the microbial organisms selectively produce a fatty alcohol, fatty aldehyde or fatty acid of a specified length or isopropanol. The microbial organisms provided advantageously enhance the production of substrates and/or pathway intermediates for the production of chain length specific fatty alcohols, fatty aldehydes, fatty acids or isopropanol. In some aspects, the microbial organisms of the invention have select gene disruptions or enzyme attenuations that increase production of fatty alcohols, fatty aldehydes or fatty acids. The invention additionally provides methods of using the above microbial organisms to produce a fatty alcohol, a fatty aldehyde, a fatty acid or isopropanol.
    Type: Application
    Filed: November 25, 2014
    Publication date: December 29, 2016
    Inventors: Robin E. OSTERHOUT, Anthony P. BURGARD, Priti PHARKYA, Stefan ANDRAE
  • Publication number: 20160237410
    Abstract: Described herein are non-natural NAD+-dependent alcohol dehydrogenases (ADHs) capable of at least two fold greater conversion of methanol or ethanol to formaldehyde or acetaldehyde, respectively, as compared to its unmodified counterpart. Nucleic acids encoding the non-natural alcohol dehydrogenases, as well as expression constructs including the nucleic acids, and engineered cells comprising the nucleic acids or expression constructs are described. Also described are engineered cells expressing a non-natural NAD+-dependent alcohol dehydrogenase, optionally include one or more additional metabolic pathway transgene(s), methanol metabolic pathway genes, target product pathway genes, cell culture compositions including the cells, methods for promoting production of the target product or intermediate thereof from the cells, compositions including the target product or intermediate, and products made from the target product or intermediate.
    Type: Application
    Filed: October 3, 2014
    Publication date: August 18, 2016
    Inventors: Stefan Andrae, Michael Patrick Kuchinskas, Jingyi Li, Harish Nagarajan, Priti Pharkya
  • Patent number: 9346902
    Abstract: Provided herein is a non-naturally occurring microbial organism having a methanol metabolic pathway that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as 3-hydroxyisobutyrate or MAA. Also provided herein are methods for using such an organism to produce 3-hydroxyisobutyrate or MAA.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: May 24, 2016
    Assignee: Genomatica, Inc.
    Inventors: Anthony P. Burgard, Robin E. Osterhout, Stephen J. Van Dien, Cara Ann Tracewell, Priti Pharkya, Stefan Andrae
  • Publication number: 20160083752
    Abstract: Provided herein is a non-naturally occurring microbial organism (NNOMO) having a methanol metabolic pathway (MMP) that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as succinate. Also provided herein are methods for using such an organism to produce succinate.
    Type: Application
    Filed: October 21, 2013
    Publication date: March 24, 2016
    Inventors: Anthony P. BURGARD, Robin E. OSTERHOUT, Stephen J. VAN DIEN, Cara Ann TRACEWELL, Priti PHARKYA, Stefan ANDRAE
  • Publication number: 20160040172
    Abstract: Provided herein are non-naturally occurring microbial organisms having a FaldFP, a FAP and/or metabolic modifications which can further include a MMP, a MOP, a hydrogenase and/or a CODH. These microbial organisms can further include a butadiene, 13BDO, CrotOH, MVC or 3-buten-1-ol pathway. Additionally provided are methods of using such microbial organisms to produce butadiene, 13BDO, CrotOH, MVC or 3-buten-1-ol.
    Type: Application
    Filed: March 14, 2014
    Publication date: February 11, 2016
    Inventors: Anthony P. BURGARD, Robin E. OSTERHOUT, Priti PHARKYA, Stefan ANDRAE, Ewa T. LIS, Carla RISSO, John D. TRAWICK