Patents by Inventor Stefan Graber

Stefan Graber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11278451
    Abstract: A computer program product for controlling a laser-assisted eye treatment, configured to encode a system controller with a routine for planning the eye treatment, invention further relates to a laser-assisted eye treatment system including a laser treatment unit and a system controller, to a method for generating control data for a laser-assisted eye treatment system, to a planning method for a laser-assisted eye treatment and to an eye treatment method using a laser beam for treating a patient's eye. The invention provides systems and methods for a fast laser-assisted eye treatment of a patient's eye which improve the security and minimize the risk of a non-optimal eye treatment and enable sale eye treatment planning and a shortening of the critical phase of the eye treatment. Encoding a system controller by a routine for planning the eye treatment is strictly based on an anatomy of a patient's eye.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: March 22, 2022
    Assignee: Carl Zeiss Meditec AG
    Inventors: Delbert Peter Andrews, Michael Stefan Rill, Stefan Gräber, Julia Werth, Rupert Menapace
  • Publication number: 20180177630
    Abstract: A computer program product for controlling a laser-assisted eye treatment, configured to encode a system controller with a routine for planning the eye treatment, invention further relates to a laser-assisted eye treatment system including a laser treatment unit and a system controller, to a method for generating control data for a laser-assisted eye treatment system, to a planning method for a laser-assisted eye treatment and to an eye treatment method using a laser beam for treating a patient's eye. The invention provides systems and methods for a fast laser-assisted eye treatment of a patient's eye which improve the security and minimize the risk of a non-optimal eye treatment and enable sale eye treatment planning and a shortening of the critical phase of the eye treatment. Encoding a system controller by a routine for planning the eye treatment is strictly based on an anatomy of a patient's eye.
    Type: Application
    Filed: September 15, 2016
    Publication date: June 28, 2018
    Applicant: Carl Zeiss Meditec AG
    Inventors: Delbert Peter ANDREWS, Michael Stefan RILL, Stefan GRÄBER, Julia WERTH, Rupert MENAPACE
  • Patent number: 9883796
    Abstract: An ophthalmologic system comprising and eye tracker and an OCT system. A method of operating the ophthalmologic system comprises: providing data representing a placement of a first B-scan performed on an eye relative to the eye; performing a measurement on the eye using the eye tracker; determining a placement of the eye relative to the ophthalmologic system based on the measurement using the eye tracker; placing the eye relative to a reference placement of the OCT system based on the provided data and the determined placement; performing A-scans on the eye at at least three A-scan positions; determining a placement of a second B-scan relative to the OCT system based on at least one of the at least three A-scans and the provided data such that the second B-scan and the first B-scan have a substantially same placement relative to the eye; and generating a representation of the second B-scan.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: February 6, 2018
    Assignee: CARL ZEISS MEDITEC AG
    Inventors: Günter Meckes, Konstantinos Filippatos, Thomas Schuhrke, Christoph Hauger, Abouzar Eslami, Stefan Gräber, Christine Kochwagner, Carolin Schiele, Christopher Käsbach
  • Publication number: 20160095514
    Abstract: An ophthalmologic system comprising and eye tracker and an OCT system. A method of operating the ophthalmologic system comprises: providing data representing a placement of a first B-scan performed on an eye relative to the eye; performing a measurement on the eye using the eye tracker; determining a placement of the eye relative to the ophthalmologic system based on the measurement using the eye tracker; placing the eye relative to a reference placement of the OCT system based on the provided data and the determined placement; performing A-scans on the eye at at least three A-scan positions; determining a placement of a second B-scan relative to the OCT system based on at least one of the at least three A-scans and the provided data such that the second B-scan and the first B-scan have a substantially same placement relative to the eye; and generating a representation of the second B-scan.
    Type: Application
    Filed: October 2, 2015
    Publication date: April 7, 2016
    Inventors: Günter MECKES, Konstantinos FILIPPATOS, Thomas SCHUHRKE, Christoph HAUGER, Abouzar ESLAMI, Stefan GRÄBER, Christine KOCHWAGNER, Carolin SCHIELE, Christopher KÄSBACH
  • Patent number: 8662667
    Abstract: A method determines the position and/or radius of the limbus and/or the position and/or radius of the pupil of a patient eye. In the method, an image of the patient eye is obtained and a plurality of different ring-shaped comparison objects having respective radii and respective centers are provided. The image is correlated with the plurality of comparison objects to yield a local best match between the image and the comparison objects when there is a coincidence of one of the ring-shaped comparison objects and a ring-shaped jump in brightness in the image having the same radius and the same center. The comparison objects having a local best match with the image are determined. Thereafter, the position of the center of the comparison object having a local best match with the image is selected as the position of the center of the limbus and/or the position of the center of the pupil.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: March 4, 2014
    Assignee: Carl Zeiss Meditec AG
    Inventors: Thomas Schuhrke, Günter Meckes, Stefan Gräber, Keith Thornton
  • Patent number: 8308298
    Abstract: The invention relates to an eye surgery microscopy system (1) having an imaging optic (14, 11) for the generation of the image of an object plane (15) and having an electronic image sensor (22), which detects the image of the object plane (15) and is connected to a computer unit (5) for the computation of the position of the center of a circular structure (44) of a patient eye (16). The computer unit (5) is designed for the computation of the position of a patient eye (16) outside of the center (52) of the circular structure (44) and provided with at least one marking (46, 48). The computer unit (5) determines the position of the at least one marking (46, 48) with reference to the computed center (52) by means of image processing via correlation with a comparison information, and an angular position of the at least one marking (46, 48) with reference to the computed center (52) by means of image processing.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: November 13, 2012
    Assignee: Carl Zeiss Meditec AG
    Inventors: Thomas Schuhrke, Günter Meckes, Stefan Gräber, Keith Thornton
  • Publication number: 20110019151
    Abstract: The invention relates to an eye surgery microscopy system (1) having an imaging optic (14, 11) for the generation of the image of an object plane (15) and having an electronic image sensor (18), which detects the image of the object plane (15) and is connected to a computer unit (5) for the computation of the position of the center of a circular structure (44) of a patient eye (16). The computer unit (5) is designed for the computation of the position of a patient eye (16) outside of the center (52) of the circular structure (44) and provided with at least one marking (46, 48). The computer unit (5) determines the position of the at least one marking (46, 48) with reference to the computed center (52) by means of image processing via correlation with a comparison information, and an angular position of the at least one marking (46, 48) with reference to the computed center (52) by means of image processing.
    Type: Application
    Filed: June 24, 2010
    Publication date: January 27, 2011
    Inventors: Thomas Schuhrke, Günter Meckes, Stefan Gräber, Keith Thornton
  • Publication number: 20110019150
    Abstract: A method determines the position and/or radius of the limbus and/or the position and/or radius of the pupil of a patient eye. In the method, an image of the patient eye is obtained and a plurality of different ring-shaped comparison objects having respective radii and respective centers are provided. The image is correlated with the plurality of comparison objects to yield a local best match between the image and the comparison objects when there is a coincidence of one of the ring-shaped comparison objects and a ring-shaped jump in brightness in the image having the same radius and the same center. The comparison objects having a local best match with the image are determined. Thereafter, the position of the center of the comparison object having a local best match with the image is selected as the position of the center of the limbus and/or the position of the center of the pupil.
    Type: Application
    Filed: June 21, 2010
    Publication date: January 27, 2011
    Inventors: Thomas Schuhrke, Günter Meckes, Stefan Gräber, Keith Thornton
  • Patent number: 6106421
    Abstract: An uncoupled belt pulley having a hub ring and a flyring, the hub ring and flyring being associated together, concentrically adjacent to one another and radially spaced apart, with a first spring body that is disposed in a gap formed by the interposed space. A belt pulley is connected to the hub ring in a rotationally elastic manner via a second spring body. The belt pulley and the second spring body are axially adjacent to one another.
    Type: Grant
    Filed: November 10, 1998
    Date of Patent: August 22, 2000
    Assignee: Firma Carl Freudenberg
    Inventors: Stefan Graber, Peter Barsch