Patents by Inventor Stefan I. Voicu

Stefan I. Voicu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7867552
    Abstract: Methods can be adapted for design of a sensitive monolayer for detection of hydrogen sulphide at room temperature with SAW/BAW devices. The sensitive monolayer can be synthesized based on chemical compounds, which belongs to a class of thiacalix[n]arenas, mercapto halides, mercapto alcohols and chloromethylated thiacalix[n]arenas. The sensitive monolayer can be directly immobilized or anchored at the surface of a piezoelectric quartz substrate in a covalently bonded manner by means of direct printing process. The piezoelectric quartz substrate can be activated in basic medium or in acid medium before the immobilization of the sensitive monolayer in order to increase the population of OH groups. Thus, the synthesized sensitive monolayer exhibits a high site density, fast response and long-term stability for H2S sensing.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: January 11, 2011
    Assignee: Honeywell International Inc.
    Inventors: Bogdan-Catalin Serban, Viorel-Georgel Dumitru, Cornel P. Cobianu, Stefan-Dan Costea, Nicolae Varachiu, Stefan I. Voicu
  • Patent number: 7695993
    Abstract: A method can be adapted for design and preparation of a matrix nanocomposite sensing film for hydrogen sulphide SAW/BAW detection at room temperature. A matrix nanocomposite can be synthesized by incorporating both single-wall and multi-wall thiolated carbon nanotubes into conductive organic polymers or ceramic nanocrystalline in a properly functionalized manner. A thin organic sensing film can be prepared based on the matrix nanocomposite. The matrix nanocomposite sensing film can be prepared on a surface of a SAW/BAW device by an additive process or a direct printing process. Finally, the sensing film can be consolidated by thermal annealing or laser annealing under ambient conditions in order to obtain the stable sensing film with higher sensitivity and electrical properties for a SAW/BAW based H2S sensor.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: April 13, 2010
    Assignee: Honeywell International Inc.
    Inventors: Bogdan-Catalin Serban, Stefan I. Voicu, Stefan-Dan Costea, Cornel P. Cobianu
  • Publication number: 20090280031
    Abstract: Methods can be adapted for design of a sensitive monolayer for detection of hydrogen sulphide at room temperature with SAW/BAW devices. The sensitive monolayer can be synthesized based on chemical compounds, which belongs to a class of thiacalix[n]arenas, mercapto halides, mercapto alcohols and chloromethylated thiacalix[n]arenas. The sensitive monolayer can be directly immobilized or anchored at the surface of a piezoelectric quartz substrate in a covalently bonded manner by means of direct printing process. The piezoelectric quartz substrate can be activated in basic medium or in acid medium before the immobilization of the sensitive monolayer in order to increase the population of OH groups. Thus, the synthesized sensitive monolayer exhibits a high site density, fast response and long-term stability for H2S sensing.
    Type: Application
    Filed: May 7, 2008
    Publication date: November 12, 2009
    Inventors: Bogdan-Catalin Serban, Viorel-Georgel Dumitru, Cornel P. Cobianu, Stefan-Dan Costea, Nicolae Varachiu, Stefan I. Voicu
  • Publication number: 20090280593
    Abstract: A method can be adapted for design and preparation of a matrix nanocomposite sensing film for hydrogen sulphide SAW/BAW detection at room temperature. A matrix nanocomposite can be synthesized by incorporating both single-wall and multi-wall thiolated carbon nanotubes into conductive organic polymers or ceramic nanocrystalline in a properly functionalized manner. A thin organic sensing film can be prepared based on the matrix nanocomposite. The matrix nanocomposite sensing film can be prepared on a surface of a SAW/BAW device by an additive process or a direct printing process. Finally, the sensing film can be consolidated by thermal annealing or laser annealing under ambient conditions in order to obtain the stable sensing film with higher sensitivity and electrical properties for a SAW/BAW based H2S sensor.
    Type: Application
    Filed: May 7, 2008
    Publication date: November 12, 2009
    Inventors: Bogdan-Catalin Serban, Stefan I. Voicu, Stefan-Dan Costea, Cornel P. Cobianu