Patents by Inventor Stefan Illek

Stefan Illek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140054635
    Abstract: A carrier (1) for an optoelectronic structure (2) is specified, wherein in places an electrically insulating passivation material (16) is arranged between an electrically conductive layer (14) of the carrier (1) and a carrier-side connecting means layer (15). Furthermore, an optoelectronic semiconductor chip comprising such a carrier and an optoelectronic structure (2) is specified, said structure being electrically conductively and mechanically connected to the carrier (1) by means of the carrier-side connecting means layer (15).
    Type: Application
    Filed: January 23, 2012
    Publication date: February 27, 2014
    Applicant: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Siegfried Herrmann, Stefan Illek
  • Publication number: 20140051194
    Abstract: A method of producing at least one optoelectronic semiconductor chip includes providing at least one optoelectronic structure, including a growth support and a semiconductor layer sequence with an active region, the semiconductor layer sequence being deposited epitaxially on the growth support, providing a carrier, applying the at least one optoelectronic structure onto the carrier with its side remote from the growth support, coating the at least one optoelectronic structure with a protective material, the protective material covering the outer face, remote from the carrier, of the growth support and side faces of the growth support and of the semiconductor layer sequence, and detaching the growth support from the semiconductor layer sequence of the at least one optoelectronic structure.
    Type: Application
    Filed: March 12, 2012
    Publication date: February 20, 2014
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Siegfried Herrmann, Stefan Illek
  • Publication number: 20130299867
    Abstract: A light-emitting diode chip includes at least two semiconductor bodies, each semiconductor body including at least one active area that generates radiation, a carrier having a top side and an underside facing away from the top side, and an electrically insulating connector arranged at the top side of the carrier, wherein the electrically insulating connector is arranged between the semiconductor bodies and the top side of the carrier, the electrically insulating connector imparts a mechanical contact between the semiconductor bodies and the carrier, and at least some of the semiconductor bodies electrically connect in series with one another.
    Type: Application
    Filed: September 28, 2011
    Publication date: November 14, 2013
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Stefan Illek, Ulrich Steegmüller, Norwin von Malm
  • Patent number: 8536603
    Abstract: An optoelectronic semiconductor chip having a semiconductor layer sequence with a plurality of layers arranged over one another includes an active layer with an active region which emits electromagnetic radiation in an emission direction when in operation, a first grating layer on the active layer which, in an emission direction, has a plurality of stripes in the form of grating lines extending perpendicularly to the emission direction with spaces arranged therebetween, and a second grating layer on the first grating layer which covers the stripes of the first grating layer and the spaces and which comprises a transparent material applied by non-epitaxial application.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: September 17, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Stefan Illek, Uwe Strauss
  • Patent number: 8476644
    Abstract: An optoelectronic component with a semiconductor body includes an active region suitable for generating radiation, and two electrical contacts arranged on the semiconductor body. The contacts are electrically connected to the active region. The contacts each have a connecting face that faces away from the semiconductor body. The contact faces are located on a connection side of the component and a side of the component that is different from the connection side is mirror-coated. A method for the manufacture of multiple components of this sort is also disclosed.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: July 2, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Stefan Illek, Andreas Ploessl, Alexander Heindl, Patrick Rode, Dieter Eissler
  • Patent number: 8428094
    Abstract: A surface-emitting semiconductor laser is described, with a semiconductor chip (1), which has a substrate (2), a DBR-mirror (3) applied to the substrate (2) and an epitaxial layer sequence (4) applied to the DBR mirror (3), said layer sequence comprising a radiation-emitting active layer (5), and with an external resonator mirror (9) arranged outside the semiconductor chip (1). The DBR mirror (3) and the substrate (2) are partially transmissive for the radiation (6) emitted by the active layer (5) and the back (14) of the substrate (2) remote from the active layer (5) is reflective to the emitted radiation (6).
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: April 23, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Hans Lindberg, Stefan Illek
  • Publication number: 20130043496
    Abstract: A lighting device with front carrier, rear carrier and plurality of light-emitting diode chips, which when in operation emits light and releases waste heat, wherein rear carrier is covered at least in selected locations by front carrier, light-emitting diode chips are arranged between rear carrier and front carrier to form array, light-emitting diodes are contacted electrically by rear and/or front carrier and immobilized mechanically by rear carrier and front carrier, front carrier is coupled thermally conductively to light-emitting diode chips and includes light outcoupling face remote from light-emitting diode chips, which light outcoupling face releases some of waste heat released by light-emitting diode chips into surrounding environment, each light-emitting diode chip is actuated with electrical nominal power of 100 mW or less when lighting device is in operation and has light yield of 100 lm/W or more.
    Type: Application
    Filed: January 17, 2011
    Publication date: February 21, 2013
    Applicant: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Matthias Sabathil, Norwin von Malm, Lutz Hoeppel, Stefan Illek, Bernd Barchmann, Patrick Rode
  • Patent number: 8378371
    Abstract: An optoelectronic semiconductor chip (1) is specified having a semiconductor body (2) which comprises a semiconductor layer sequence and an active area which is suitable for radiation production, and having a radiation-permeable and electrically conductive contact layer (6) which is arranged on the semiconductor body and is electrically conductively connected to the active area, with the contact layer extending over a barrier layer (5) in the semiconductor layer sequence and over a connecting layer (4) in the semiconductor layer sequence, and with the contact layer being electrically conductively connected to the active area via a connecting area (7) of the connecting layer. A method is also specified for producing a contact structure for an optoelectronic semiconductor chip which is suitable for radiation production.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: February 19, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Stefan Illek
  • Publication number: 20130039617
    Abstract: An optoelectronic component (1) comprises a carrier (2) and at least one semiconductor chip (3). The semiconductor chip (3) is arranged on the carrier (2) and designed for emitting a primary radiation (6). The semiconductor chip (3) is at least partly enclosed by an at least partly transparent medium (7) having a height (8) above the carrier (2) and a width (9) along the carrier (2). Particles (10, 11) are introduced into the medium (7) and interact with the primary radiation (6). The medium (7) has a ratio of the height (8) to the width (9) of greater than 1.
    Type: Application
    Filed: March 28, 2011
    Publication date: February 14, 2013
    Inventors: Stefan Illek, Alexander Linkov, Matthias Sabathil
  • Patent number: 8325778
    Abstract: A surface emitting semiconductor laser includes a first semiconductor layer sequence, which comprises a pump laser. A second semiconductor layer sequence is arranged on the first semiconductor layer sequence and comprises a vertical emitter. The vertical emitter has a radiation-emitting active layer, a radiation exit side and a connecting side lying opposite the radiation exit side. The pump laser is arranged at the radiation exit side of the vertical emitter and a carrier body is arranged at the connecting side of the vertical emitter. Furthermore, a method for producing a surface emitting semiconductor laser is specified.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: December 4, 2012
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Stefan Illek
  • Patent number: 8314430
    Abstract: An optoelectronic component with a semiconductor body includes an active region suitable for generating radiation, and two electrical contacts arranged on the semiconductor body. The contacts are electrically connected to the active region. The contacts each have a connecting face that faces away from the semiconductor body. The contact faces are located on a connection side of the component and a side of the component that is different from the connection side is mirror-coated. A method for the manufacture of multiple components of this sort is also disclosed.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: November 20, 2012
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Stefan Illek, Andreas Ploessl, Alexander Heindl, Patrick Rode, Dieter Eissler
  • Patent number: 8293553
    Abstract: In a method for producing at least at least one area (8) with reduced electrical conductivity within an electrically conductive III-V semiconductor layer (3), a ZnO layer (1) is applied to the area (8) of the semiconductor layer (3) and subsequently annealed at a temperature preferably between 300° C. and 500° C. The ZnO layer (1) is preferably deposited on the III-V semiconductor layer (3) at a temperature of less than 150° C., preferably at a temperature greater than or equal to 25° C. and less than or equal to 120° C. The area (8) with reduced electrical conductivity is preferably located in a radiation emitting optoelectronic device between the active zone (4) and a connecting contact (7) in order to reduce current injection into the areas of the active zone (4) located opposite to the connecting contact (7).
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: October 23, 2012
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Stefan Illek, Wilhelm Stein, Robert Walter, Ralph Wirth
  • Patent number: 8154031
    Abstract: A module comprising a regular arrangement of individual radiation-emitting semiconductor bodies (1) which are applied on a mounting area (6) of a carrier (2), wherein a wire connection is fitted between two adjacent radiation-emitting semiconductor bodies (1) on a top side, opposite to the mounting area (6), of the two radiation-emitting semiconductor bodies (1).
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: April 10, 2012
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Stefan Grötsch, Berthold Hahn, Stefan Illek, Wolfgang Schnabel
  • Patent number: 8102060
    Abstract: A device comprising a first component (5) having a first surface (6), a second component (8) having a second surface (9) and a connection layer (7) between the first surface (6) of the first component (5) and the second surface (9) of the second component (8), wherein the connection layer (7) comprises an electrically insulating adhesive and there is an electrically conductive contact between the first surface (6) of the first component (5) and the second surface (9) of the second component (8).
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: January 24, 2012
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Andreas Plössl, Stefan Illek
  • Publication number: 20110235664
    Abstract: An optoelectronic semiconductor chip having a semiconductor layer sequence with a plurality of layers arranged over one another includes an active layer with an active region which emits electromagnetic radiation in an emission direction when in operation, a first grating layer on the active layer which, in an emission direction, has a plurality of stripes in the form of grating lines extending perpendicularly to the emission direction with spaces arranged therebetween, and a second grating layer on the first grating layer which covers the stripes of the first grating layer and the spaces and which comprises a transparent material applied by non-epitaxial application.
    Type: Application
    Filed: October 12, 2009
    Publication date: September 29, 2011
    Applicant: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Stefan Illek, Uwe Strauss
  • Patent number: 8017953
    Abstract: An LED chip is specified that comprises at least one current barrier. The current barrier is suitable for selectively preventing or reducing, by means of a reduced current density, the generation of radiation in a region laterally covered by the electrical connector body. The current spreading layer contains at least one TCO (Transparent Conductive Oxide). In a particularly preferred embodiment, at least one current barrier is contained which comprises material of the epitaxial semiconductor layer sequence, material of the current spreading layer and/or an interface between the semiconductor layer sequence and the current spreading layer. A method for producing an LED chip is also specified.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: September 13, 2011
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Berthold Hahn, Ralph Wirth, Tony Albrecht, Magnus Ahlstedt, Stefan Illek, Klaus Streubel
  • Patent number: 7995633
    Abstract: A method for producing a multiplicity of semiconductor lasers (100) comprising the steps of providing a carrier wafer (30), producing an assembly (70) by applying a multiplicity of semiconductor laser chips (4) to a top side (31) of the carrier wafer (30), and singulating the assembly (70) to form a multiplicity of semiconductor lasers (100). Each semiconductor laser (100) comprises a mounting block (3) and at least one semiconductor laser chip (4). Each mounting block (3) has a mounting area (13) which runs substantially perpendicular to a top side (12) of the mounting block (3), on which top side the semiconductor laser chip (4) is arranged. The mounting area (13) is produced during the singulation of the assembly.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: August 9, 2011
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Juergen Dachs, Stefan Illek, Roland Schulz, Thomas Schwarz, Frank Singer, Heiko Unold
  • Publication number: 20110188529
    Abstract: An optoelectronic component includes an optical pump device including a first radiation-generating layer and a first radiation exit area at a top side of the pump device, wherein electromagnetic radiation generated during operation of the pump device is coupled out from the pump device through the first radiation exit area transversely and at least in part non-perpendicularly with respect to the first radiation-generating layer, and a surface emitting semiconductor laser chip including a reflective layer sequence including a Bragg mirror, and a second radiation-generating layer, wherein the surface emitting semiconductor laser chip is fixed to the top side of the pump device, and the reflective layer sequence is arranged between the first radiation exit area and the second radiation-generating layer.
    Type: Application
    Filed: August 31, 2009
    Publication date: August 4, 2011
    Applicant: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventor: Stefan Illek
  • Publication number: 20110175238
    Abstract: A method for producing a plurality of semiconductor chips is specified. A plurality of semiconductor bodies is provided on a substrate, wherein the semiconductor bodies are spaced apart from one another by interspaces. A structured carrier is provided, having a plurality of elevations. The structured carrier is positioned relative to the substrate in such a way that the elevations of the structured carrier extend into the interspaces between the semiconductor bodies A mechanically stable assemblage is produced, comprising the substrate and the structured carrier. The assemblage is singulated into a plurality of semiconductor chips.
    Type: Application
    Filed: December 8, 2008
    Publication date: July 21, 2011
    Inventor: Stefan Illek
  • Publication number: 20110122911
    Abstract: A surface-emitting semiconductor laser is described, with a semiconductor chip (1), which has a substrate (2), a DBR-mirror (3) applied to the substrate (2) and an epitaxial layer sequence (4) applied to the DBR mirror (3), said layer sequence comprising a radiation-emitting active layer (5), and with an external resonator mirror (9) arranged outside the semiconductor chip (1). The DBR mirror (3) and the substrate (2) are partially transmissive for the radiation (6) emitted by the active layer (5) and the back (14) of the substrate (2) remote from the active layer (5) is reflective to the emitted radiation (6).
    Type: Application
    Filed: December 18, 2008
    Publication date: May 26, 2011
    Applicant: Osram Opto Semiconductors GmbH
    Inventors: Hans Lindberg, Stefan Illek