Patents by Inventor Stefan K Mierau

Stefan K Mierau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8907088
    Abstract: The present invention provides strategies for making cyclic triamines. Reactant media including certain precursors and/or certain types of catalysts can be converted into cyclic triamines with improved conversion and selectivity. The strategies can be incorporated into reactions that involve transamination schemes and/or reductive amination schemes. In the case of transamination, for instance, using transamination to cause ring closure of higher amines in the presence of a suitable catalyst leads to desired cyclic triamines with notable conversion and yield. In the case of reductive amination, reacting suitable polyfunctional precursors in the presence of a suitable catalyst also yields cyclic triamines via ring closure with notable selectivity and conversion. Both transamination and reductive amination methodologies can be practiced under much milder temperatures than are used when solely acid catalysts are used. Preferred embodiments can produce reaction mixtures that are generally free of salt by-products.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: December 9, 2014
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: Stephen W. King, Stefan K. Mierau, Thomas Z. Smak
  • Patent number: 8618108
    Abstract: The present invention provides strategies for making cyclic triamines. Reactant media including certain precursors and/or certain types of catalysts can be converted into cyclic triamines with improved conversion and selectivity. The strategies can be incorporated into reactions that involve transamination schemes and/or reductive amination schemes. In the case of transamination, for instance, using transamination to cause ring closure of higher amines in the presence of a suitable catalyst leads to desired cyclic triamines with notable conversion and yield. In the case of reductive amination, reacting suitable polyfunctional precursors in the presence of a suitable catalyst also yields cyclic triamines via ring closure with notable selectivity and conversion. Both transamination and reductive amination methodologies can be practiced under much milder temperatures than are used when solely acid catalysts are used. Preferred embodiments can produce reaction mixtures that are generally free of salt by-products.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: December 31, 2013
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: Stephen W. King, Stefan K. Mierau, Thomas Z. Srnak
  • Patent number: 8604248
    Abstract: The present invention provides catalyst compositions useful for transamination reactions. The catalyst compositions have a catalyst support that includes transitional alumina, use a low metal loading (for example, less than 25 wt. %), and do not require the presence of rhenium. The catalyst compositions are able to advantageously promote transamination of a reactant product (such as the transamination of EDA to DETA) with excellent activity and selectivity, and similar to transaminations promoted using a precious metal-containing catalyst.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: December 10, 2013
    Assignee: Union Carbide Chemicals & Plastics Technolgy LLC
    Inventors: Stephen W. King, Stefan K. Mierau
  • Patent number: 8492592
    Abstract: The invention provides a method of transaminating a reactant with a catalyst composition comprising support and catalyst portions. The support includes an acidic mixed metal oxide including a transitional alumina and a second metal oxide. The transitional alumina can comprise delta or theta alumina, in combination with other transitional phases, or an alpha or gamma alumina. The second metal oxide has a weight percentage less than the weight percentage of alumina. The catalyst portion is 25 weight percent or less of the catalyst composition and is composed of nickel and rhenium. The catalyst portion includes nickel in an amount in the range of 2 to 20 weight percent, based upon total catalyst composition weight, and there is no boron in the catalyst portion. The method provides high activity and selectivity for reactant transamination to a desired product while minimizing the formation of unwanted cyclic products.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: July 23, 2013
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: Stephen W. King, Stefan K. Mierau
  • Publication number: 20120277435
    Abstract: The present invention provides strategies for making cyclic triamines. Reactant media including certain precursors and/or certain types of catalysts can be converted into cyclic triamines with improved conversion and selectivity. The strategies can be incorporated into reactions that involve transamination schemes and/or reductive amination schemes. In the case of transamination, for instance, using transamination to cause ring closure of higher amines in the presence of a suitable catalyst leads to desired cyclic triamines with notable conversion and yield. In the case of reductive amination, reacting suitable polyfunctional precursors in the presence of a suitable catalyst also yields cyclic triamines via ring closure with notable selectivity and conversion. Both transamination and reductive amination methodologies can be practiced under much milder temperatures than are used when solely acid catalysts are used. Preferred embodiments can produce reaction mixtures that are generally free of salt by-products.
    Type: Application
    Filed: July 13, 2012
    Publication date: November 1, 2012
    Inventors: Stephen W. King, Stefan K. Mierau, Thomas Z. Smak
  • Patent number: 8293676
    Abstract: The present invention provides catalyst compositions useful for transamination reactions. The catalyst compositions have a catalyst support that includes transitional alumina, use a low metal loading (for example, less than 25 wt. %), and do not require the presence of rhenium. The catalyst compositions are able to advantageously promote transamination of a reactant product (such as the transamination of EDA to DETA) with excellent activity and selectivity, and similar to transaminations promoted using a precious metal-containing catalyst.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: October 23, 2012
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: Stephen W. King, Stefan K. Mierau
  • Patent number: 8273884
    Abstract: The present invention provides strategies for making cyclic triamines. Reactant media including certain precursors and/or certain types of catalysts can be converted into cyclic triamines with improved conversion and selectivity. The strategies can be incorporated into reactions that involve transamination schemes and/or reductive amination schemes. In the case of transamination, for instance, using transamination to cause ring closure of higher amines in the presence of a suitable catalyst leads to desired cyclic triamines with notable conversion and yield. In the case of reductive amination, reacting suitable polyfunctional precursors in the presence of a suitable catalyst also yields cyclic triamines via ring closure with notable selectivity and conversion. Both transamination and reductive amination methodologies can be practiced under much milder temperatures than are used when solely acid catalysts are used. Preferred embodiments can produce reaction mixtures that are generally free of salt by-products.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: September 25, 2012
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: Stephen W. King, Thomas Z. Srnak, Stefan K. Mierau
  • Publication number: 20120238780
    Abstract: The invention provides a method of transaminating a reactant with a catalyst composition comprising support and catalyst portions. The support includes an acidic mixed metal oxide including a transitional alumina and a second metal oxide. The transitional alumina can comprise delta or theta alumina, in combination with other transitional phases, or an alpha or gamma alumina. The second metal oxide has a weight percentage less than the weight percentage of alumina. The catalyst portion is 25 weight percent or less of the catalyst composition and is composed of nickel and rhenium. The catalyst portion includes nickel in an amount in the range of 2 to 20 weight percent, based upon total catalyst composition weight, and there is no boron in the catalyst portion. The method provides high activity and selectivity for reactant transamination to a desired product while minimizing the formation of unwanted cyclic products.
    Type: Application
    Filed: April 26, 2012
    Publication date: September 20, 2012
    Inventors: Stephen W. King, Stefan K. Mierau
  • Patent number: 8187997
    Abstract: The invention provides a catalyst composition composed of a support portion and a catalyst portion. The support portion includes an acidic mixed metal oxide including a transitional alumina and a second metal oxide. The transitional alumina can comprise delta or theta alumina, in combination with other transitional phases, or an alpha or gamma alumina. The second metal oxide has a weight percentage that is less than the weight percentage of alumina. The catalyst portion is 25 weight percent or less of the catalyst composition and is composed of nickel and rhenium. The catalyst portion includes nickel in an amount in the range of 2 to 20 weight percent, based upon total catalyst composition weight, and there is no boron in the catalyst portion.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: May 29, 2012
    Assignee: Union Carbide Chemicals & Technology LLC
    Inventors: Stephen W. King, Stefan K Mierau
  • Publication number: 20100137642
    Abstract: The present invention provides catalyst compositions useful for transamination reactions. The catalyst compositions have a catalyst support that includes transitional alumina, use a low metal loading (for example, less than 25 wt. %), and do not require the presence of rhenium. The catalyst compositions are able to advantageously promote transamination of a reactant product (such as the transamination of EDA to DETA) with excellent activity and selectivity, and similar to transaminations promoted using a precious metal-containing catalyst.
    Type: Application
    Filed: October 6, 2009
    Publication date: June 3, 2010
    Inventors: Stephen W. King, Stefan K. Mierau
  • Publication number: 20100094007
    Abstract: The present invention provides strategies for making cyclic triamines. Reactant media including certain precursors and/or certain types of catalysts can be converted into cyclic triamines with improved conversion and selectivity. The strategies can be incorporated into reactions that involve transamination schemes and/or reductive amination schemes. In the case of transamination, for instance, using transamination to cause ring closure of higher amines in the presence of a suitable catalyst leads to desired cyclic triamines with notable conversion and yield. In the case of reductive amination, reacting suitable polyfunctional precursors in the presence of a suitable catalyst also yields cyclic triamines via ring closure with notable selectivity and conversion. Both transamination and reductive amination methodologies can be practiced under much milder temperatures than are used when solely acid catalysts are used. Preferred embodiments can produce reaction mixtures that are generally free of salt by-products.
    Type: Application
    Filed: October 6, 2009
    Publication date: April 15, 2010
    Inventors: Stephen W. King, Thomas Z. Srnak, Stefan K. Mierau
  • Publication number: 20100094008
    Abstract: The present invention provides strategies for making cyclic triamines. Reactant media including certain precursors and/or certain types of catalysts can be converted into cyclic triamines with improved conversion and selectivity. The strategies can be incorporated into reactions that involve transamination schemes and/or reductive amination schemes. In the case of transamination, for instance, using transamination to cause ring closure of higher amines in the presence of a suitable catalyst leads to desired cyclic triamines with notable conversion and yield. In the case of reductive amination, reacting suitable polyfunctional precursors in the presence of a suitable catalyst also yields cyclic triamines via ring closure with notable selectivity and conversion. Both transamination and reductive amination methodologies can be practiced under much milder temperatures than are used when solely acid catalysts are used. Preferred embodiments can produce reaction mixtures that are generally free of salt by-products.
    Type: Application
    Filed: October 6, 2009
    Publication date: April 15, 2010
    Inventors: Stephen W. King, Thomas Z. Srnak, Stefan K. Mierau
  • Publication number: 20100087682
    Abstract: The invention provides a catalyst composition composed of a support portion and a catalyst portion. The support portion includes an acidic mixed metal oxide including a transitional alumina and a second metal oxide. The transitional alumina can comprise delta or theta alumina, in combination with other transitional phases, or an alpha or gamma alumina. The second metal oxide has a weight percentage that is less than the weight percentage of alumina. The catalyst portion is 25 weight percent or less of the catalyst composition and is composed of nickel and rhenium. The catalyst portion includes nickel in an amount in the range of 2 to 20 weight percent, based upon total catalyst composition weight, and there is no boron in the catalyst portion.
    Type: Application
    Filed: October 6, 2009
    Publication date: April 8, 2010
    Inventors: Stephen W. King, Stefan K. Mierau