Patents by Inventor Stefan Klatt

Stefan Klatt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7568342
    Abstract: A supply pump actuating turbine, in particular for a power plant, that includes at least two jet sectors for introducing a working gas into the turbine, a line system for connecting the at least two jet sectors to at least two different sources of working gas, and a valve arrangement for setting the supply of the jet sectors with the working gas from at least one of the sources. The valve arrangement and the line system are designed in such a way that at least three operating states can be set: a first operating state, in which all the jet sectors are supplied with the working gas of the first source, a second operating state, in which all the jet sectors are supplied with the working gas of the second source, and a third operating state, in which at least one of the jet sectors is supplied with the working gas of the first source and at least one other of the jet sectors is supplied with the working gas of the second source.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: August 4, 2009
    Assignee: Alstom Technology Ltd
    Inventors: Reinhard Johannes Severin Cloppenburg, Dirk Hartmann, Stefan Klatt, Karsten Mueller
  • Publication number: 20060207256
    Abstract: A supply pump actuating turbine, in particular for a power plant, that includes at least two jet sectors for introducing a working gas into the turbine, a line system for connecting the at least two jet sectors to at least two different sources of working gas, and a valve arrangement for setting the supply of the jet sectors with the working gas from at least one of the sources. The valve arrangement and the line system are designed in such a way that at least three operating states can be set: a first operating state, in which all the jet sectors are supplied with the working gas of the first source, a second operating state, in which all the jet sectors are supplied with the working gas of the second source, and a third operating state, in which at least one of the jet sectors is supplied with the working gas of the first source and at least one other of the jet sectors is supplied with the working gas of the second source.
    Type: Application
    Filed: March 7, 2006
    Publication date: September 21, 2006
    Applicant: ALSTOM Technology Ltd
    Inventors: Reinhard Cloppenburg, Dirk Hartmann, Stefan Klatt, Karsten Mueller
  • Patent number: 6647727
    Abstract: In a method for controlling a steam turbine installation having a reheater (7) arranged between high-pressure turbine (2) and medium-pressure turbine (3) or low-pressure turbine (4), a low-pressure bypass (18) with a low-pressure bypass valve (19) also being present, which bypass leads from the reheater outlet into a condenser (5), a flexible and optimum control with respect to variable high-pressure turbine exhaust steam temperature (THD) is achieved in that characteristic curves for the required value of the reheater pressure are used for controlling the low-pressure bypass valve (19) during run-up, during (partial) load rejection procedures or during idling, which characteristic curves depend on the load (L) applied to the installation, and/or on the pressure (P) before the high-pressure turbine blading and/or on the reheater steam flow (M), and also on the high-pressure turbine exhaust steam temperature (THD), and/or on the temperature (TFD) and/or on the pressure (pFD) of the live steam introduced into t
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: November 18, 2003
    Assignee: Alstom (Switzerland) Ltd.
    Inventors: Stefan Klatt, Kurt Schnaithmann
  • Publication number: 20030024248
    Abstract: In a method for controlling a steam turbine installation having a reheater (7) arranged between high-pressure turbine (2) and medium-pressure turbine (3) or low-pressure turbine (4), a low-pressure bypass (18) with a low-pressure bypass valve (19) also being present, which bypass leads from the reheater outlet into a condenser (5), a flexible and optimum control with respect to variable high-pressure turbine exhaust steam temperature (THD) is achieved in that characteristic curves for the required value of the reheater pressure are used for controlling the low-pressure bypass valve (19) during run-up, during (partial) load rejection procedures or during idling, which characteristic curves depend on the load (L) applied to the installation, and/or on the pressure (P) before the high-pressure turbine blading and/or on the reheater steam flow (M), and also on the high-pressure turbine exhaust steam temperature (THD), and/or on the temperature (TFD) and/or on the pressure (pFD) of the live steam introduced into t
    Type: Application
    Filed: July 30, 2002
    Publication date: February 6, 2003
    Inventors: Stefan Klatt, Kurt Schnaithmann