Patents by Inventor Stefan Majoni

Stefan Majoni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12160215
    Abstract: A method for manufacturing a piezoelectric resonator. The method includes: depositing a piezoelectric layer and forming a recess in a lateral area in such a way that a silicon functional layer is exposed inside the recess, forming a silicide layer on a surface of the silicon functional layer exposed inside the recess, forming a diffusion barrier layer on the silicide layer, depositing and structuring a first and second metallization layer in such a way that a supply line and two connection elements are formed, forming the oscillating structure by structuring the silicon functional layer, the silicon functional layer of the oscillating structure being able to be electrically contacted via the first connection element and forming a lower electrode of the resonator, the first metallization layer of the oscillating structure being able to be electrically contacted via the second connection element and forming an upper electrode of the resonator.
    Type: Grant
    Filed: January 11, 2022
    Date of Patent: December 3, 2024
    Assignee: ROBERT BOSCH GMBH
    Inventors: Friedjof Heuck, Marcus Pritschow, Markus Kuhnke, Peter Schmollngruber, Ricardo Zamora, Sebastien Loiseau, Stefan Majoni, Stefan Krause, Viktor Morosow
  • Patent number: 11939215
    Abstract: A microelectromechanical structure, including a functional element situated in a cavity of the microelectromechanical structure. The functional element includes an aluminum nitride layer. The cavity is closed by a cap layer. The cap layer includes epitaxial silicon. A method for manufacturing a micromechanical structure is also described.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: March 26, 2024
    Assignee: ROBERT BOSCH GMBH
    Inventors: Penny Weir, Markus Kuhnke, Stefan Majoni
  • Patent number: 11897758
    Abstract: An electrical contacting between a surrounding wiring and a conductor region. The conductor region is situated in a conductor layer above an SOI wafer or SOI chip. A cover layer is situated above the conductor layer and below the surrounding wiring. The cover layer has a contacting region. The contacting region is insulated from the rest of the cover layer by a first configuration of recesses. An opening is formed at least in the contacting region. A metallic material is situated in the opening. The metallic material connects the surrounding wiring and the conductor region.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: February 13, 2024
    Assignee: ROBERT BOSCH GMBH
    Inventors: Jochen Reinmuth, Markus Kuhnke, Stefan Majoni, Timo Schary
  • Patent number: 11405010
    Abstract: A method for manufacturing a micromechanical layer structure, including: providing a first protective layer patterned to have at least one opening which is filled with sacrificial layer material; depositing a functional-layer layer structure; producing a first opening in the functional-layer layer structure to at least one opening of the first protective layer, so that in at least one of the layers of the functional-layer layer structure; depositing a second protective layer so that the first opening is filled with material of the second protective layer; patterning the second protective layer and the filled first opening to have a second opening to the first protective layer, the second opening having the same or a lesser width than the first opening; removing sacrificial layer material at least in the opening of the first protective layer; and removing protective layer material at least in the second opening.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: August 2, 2022
    Assignee: Robert Bosch GmbH
    Inventor: Stefan Majoni
  • Publication number: 20220231652
    Abstract: A method for manufacturing a piezoelectric resonator. The method includes: depositing a piezoelectric layer and forming a recess in a lateral area in such a way that a silicon functional layer is exposed inside the recess, forming a silicide layer on a surface of the silicon functional layer exposed inside the recess, forming a diffusion barrier layer on the silicide layer, depositing and structuring a first and second metallization layer in such a way that a supply line and two connection elements are formed, forming the oscillating structure by structuring the silicon functional layer, the silicon functional layer of the oscillating structure being able to be electrically contacted via the first connection element and forming a lower electrode of the resonator, the first metallization layer of the oscillating structure being able to be electrically contacted via the second connection element and forming an upper electrode of the resonator.
    Type: Application
    Filed: January 11, 2022
    Publication date: July 21, 2022
    Inventors: Friedjof Heuck, Marcus Pritschow, Markus Kuhnke, Peter Schmollngruber, Ricardo Zamora, Sebastien Loiseau, Stefan Majoni, Stefan Krause, Viktor Morosow
  • Publication number: 20210261404
    Abstract: An electrical contacting between a surrounding wiring and a conductor region. The conductor region is situated in a conductor layer above an SOI wafer or SOI chip. A cover layer is situated above the conductor layer and below the surrounding wiring. The cover layer has a contacting region. The contacting region is insulated from the rest of the cover layer by a first configuration of recesses. An opening is formed at least in the contacting region. A metallic material is situated in the opening. The metallic material connects the surrounding wiring and the conductor region.
    Type: Application
    Filed: June 25, 2019
    Publication date: August 26, 2021
    Inventors: Jochen Reinmuth, Markus Kuhnke, Stefan Majoni, Timo Schary
  • Publication number: 20210229986
    Abstract: A microelectromechanical structure, including a functional element situated in a cavity of the microelectromechanical structure. The functional element includes an aluminum nitride layer. The cavity is closed by a cap layer. The cap layer includes epitaxial silicon. A method for manufacturing a micromechanical structure is also described.
    Type: Application
    Filed: October 4, 2019
    Publication date: July 29, 2021
    Inventors: Penny Weir, Markus Kuhnke, Stefan Majoni
  • Publication number: 20210167745
    Abstract: A method for manufacturing a micromechanical layer structure, including: providing a first protective layer patterned to have at least one opening which is filled with sacrificial layer material; depositing a functional-layer layer structure; producing a first opening in the functional-layer layer structure to at least one opening of the first protective layer, so that in at least one of the layers of the functional-layer layer structure; depositing a second protective layer so that the first opening is filled with material of the second protective layer; patterning the second protective layer and the filled first opening to have a second opening to the first protective layer, the second opening having the same or a lesser width than the first opening; removing sacrificial layer material at least in the opening of the first protective layer; and removing protective layer material at least in the second opening.
    Type: Application
    Filed: December 6, 2018
    Publication date: June 3, 2021
    Inventor: Stefan Majoni
  • Patent number: 10889491
    Abstract: A method for producing a micromechanical element includes producing a micromechanical structure, the micromechanical structure having: a functional layer for a micromechanical element, a sacrifical layer at least partly surrounding the functional layer, and a closure cap on the sacrifical layer. The method further includes applying a cover layer on the micromechanical structure. The method further includes producing a grid structure in the cover layer. The method further includes producing a cavity below the grid structure, as access to the sacrifical layer. The method further includes at least partly removing the sacrifical layer. The method further includes applying a closure layer at least on the grid structure of the cover layer for the purpose of closing the access to the cavity.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: January 12, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Markus Kuhnke, Heiko Stahl, Stefan Majoni
  • Patent number: 10643896
    Abstract: A method for producing a via in a wafer includes providing a wafer, comprising silicon. The method includes producing a conductive region, in the form of a conductor track, preferably composed of polycrystalline silicon, in the wafer. The method includes producing a hole in the wafer such that the hole is fluidically connected to the conductive region and the sidewalls of the hole comprise silicon. The method includes applying a tungsten hexafluoride-resistant protective layer, produced from silicon oxide, in the region of the surface of the hole that is to be produced or has been produced, such that an opening of the hole is free of a protective layer. The method includes applying tungsten hexafluoride to the hole and the region of the opening of the hole by a reducing-agent-free vapor phase deposition process, preferably in the form of a CVD process, for producing the via.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: May 5, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Heiko Stahl, Jochen Reinmuth, Markus Kuhnke, Stefan Majoni, Timo Schary
  • Publication number: 20190096762
    Abstract: A method for producing a via in a wafer includes providing a wafer, comprising silicon. The method includes producing a conductive region, in the form of a conductor track, preferably composed of polycrystalline silicon, in the wafer. The method includes producing a hole in the wafer such that the hole is fluidically connected to the conductive region and the sidewalls of the hole comprise silicon. The method includes applying a tungsten hexafluoride-resistant protective layer, produced from silicon oxide, in the region of the surface of the hole that is to be produced or has been produced, such that an opening of the hole is free of a protective layer. The method includes applying tungsten hexafluoride to the hole and the region of the opening of the hole by a reducing-agent-free vapor phase deposition process, preferably in the form of a CVD process, for producing the via.
    Type: Application
    Filed: September 19, 2018
    Publication date: March 28, 2019
    Inventors: Heiko Stahl, Jochen Reinmuth, Markus Kuhnke, Stefan Majoni, Timo Schary
  • Publication number: 20190092628
    Abstract: A method for producing a micromechanical element includes producing a micromechanical structure, the micromechanical structure having: a functional layer for a micromechanical element, a sacrifical layer at least partly surrounding the functional layer, and a closure cap on the sacrifical layer. The method further includes applying a cover layer on the micromechanical structure. The method further includes producing a grid structure in the cover layer. The method further includes producing a cavity below the grid structure, as access to the sacrifical layer. The method further includes at least partly removing the sacrifical layer. The method further includes applying a closure layer at least on the grid structure of the cover layer for the purpose of closing the access to the cavity.
    Type: Application
    Filed: September 18, 2018
    Publication date: March 28, 2019
    Inventors: Markus Kuhnke, Heiko Stahl, Stefan Majoni
  • Publication number: 20170358736
    Abstract: A method for manufacturing a Hall sensor, an insulation layer being initially applied to a wafer including an ASIC or integrated into the wafer, a Hall layer, for example, made of InSb or another III-V semiconductor material, being situated thereon, and this Hall layer being at least sectionally recrystallized with the aid of a laser. The insulation layer may be porous or may include a cavity or reflective layer for thermal protection of the ASIC.
    Type: Application
    Filed: January 13, 2016
    Publication date: December 14, 2017
    Applicant: Robert Bosch GmbH
    Inventors: Stefan Majoni, Christian Patak