Patents by Inventor Stefan Majoni
Stefan Majoni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12160215Abstract: A method for manufacturing a piezoelectric resonator. The method includes: depositing a piezoelectric layer and forming a recess in a lateral area in such a way that a silicon functional layer is exposed inside the recess, forming a silicide layer on a surface of the silicon functional layer exposed inside the recess, forming a diffusion barrier layer on the silicide layer, depositing and structuring a first and second metallization layer in such a way that a supply line and two connection elements are formed, forming the oscillating structure by structuring the silicon functional layer, the silicon functional layer of the oscillating structure being able to be electrically contacted via the first connection element and forming a lower electrode of the resonator, the first metallization layer of the oscillating structure being able to be electrically contacted via the second connection element and forming an upper electrode of the resonator.Type: GrantFiled: January 11, 2022Date of Patent: December 3, 2024Assignee: ROBERT BOSCH GMBHInventors: Friedjof Heuck, Marcus Pritschow, Markus Kuhnke, Peter Schmollngruber, Ricardo Zamora, Sebastien Loiseau, Stefan Majoni, Stefan Krause, Viktor Morosow
-
Patent number: 11939215Abstract: A microelectromechanical structure, including a functional element situated in a cavity of the microelectromechanical structure. The functional element includes an aluminum nitride layer. The cavity is closed by a cap layer. The cap layer includes epitaxial silicon. A method for manufacturing a micromechanical structure is also described.Type: GrantFiled: October 4, 2019Date of Patent: March 26, 2024Assignee: ROBERT BOSCH GMBHInventors: Penny Weir, Markus Kuhnke, Stefan Majoni
-
Patent number: 11897758Abstract: An electrical contacting between a surrounding wiring and a conductor region. The conductor region is situated in a conductor layer above an SOI wafer or SOI chip. A cover layer is situated above the conductor layer and below the surrounding wiring. The cover layer has a contacting region. The contacting region is insulated from the rest of the cover layer by a first configuration of recesses. An opening is formed at least in the contacting region. A metallic material is situated in the opening. The metallic material connects the surrounding wiring and the conductor region.Type: GrantFiled: June 25, 2019Date of Patent: February 13, 2024Assignee: ROBERT BOSCH GMBHInventors: Jochen Reinmuth, Markus Kuhnke, Stefan Majoni, Timo Schary
-
Patent number: 11405010Abstract: A method for manufacturing a micromechanical layer structure, including: providing a first protective layer patterned to have at least one opening which is filled with sacrificial layer material; depositing a functional-layer layer structure; producing a first opening in the functional-layer layer structure to at least one opening of the first protective layer, so that in at least one of the layers of the functional-layer layer structure; depositing a second protective layer so that the first opening is filled with material of the second protective layer; patterning the second protective layer and the filled first opening to have a second opening to the first protective layer, the second opening having the same or a lesser width than the first opening; removing sacrificial layer material at least in the opening of the first protective layer; and removing protective layer material at least in the second opening.Type: GrantFiled: December 6, 2018Date of Patent: August 2, 2022Assignee: Robert Bosch GmbHInventor: Stefan Majoni
-
Publication number: 20220231652Abstract: A method for manufacturing a piezoelectric resonator. The method includes: depositing a piezoelectric layer and forming a recess in a lateral area in such a way that a silicon functional layer is exposed inside the recess, forming a silicide layer on a surface of the silicon functional layer exposed inside the recess, forming a diffusion barrier layer on the silicide layer, depositing and structuring a first and second metallization layer in such a way that a supply line and two connection elements are formed, forming the oscillating structure by structuring the silicon functional layer, the silicon functional layer of the oscillating structure being able to be electrically contacted via the first connection element and forming a lower electrode of the resonator, the first metallization layer of the oscillating structure being able to be electrically contacted via the second connection element and forming an upper electrode of the resonator.Type: ApplicationFiled: January 11, 2022Publication date: July 21, 2022Inventors: Friedjof Heuck, Marcus Pritschow, Markus Kuhnke, Peter Schmollngruber, Ricardo Zamora, Sebastien Loiseau, Stefan Majoni, Stefan Krause, Viktor Morosow
-
Publication number: 20210261404Abstract: An electrical contacting between a surrounding wiring and a conductor region. The conductor region is situated in a conductor layer above an SOI wafer or SOI chip. A cover layer is situated above the conductor layer and below the surrounding wiring. The cover layer has a contacting region. The contacting region is insulated from the rest of the cover layer by a first configuration of recesses. An opening is formed at least in the contacting region. A metallic material is situated in the opening. The metallic material connects the surrounding wiring and the conductor region.Type: ApplicationFiled: June 25, 2019Publication date: August 26, 2021Inventors: Jochen Reinmuth, Markus Kuhnke, Stefan Majoni, Timo Schary
-
Publication number: 20210229986Abstract: A microelectromechanical structure, including a functional element situated in a cavity of the microelectromechanical structure. The functional element includes an aluminum nitride layer. The cavity is closed by a cap layer. The cap layer includes epitaxial silicon. A method for manufacturing a micromechanical structure is also described.Type: ApplicationFiled: October 4, 2019Publication date: July 29, 2021Inventors: Penny Weir, Markus Kuhnke, Stefan Majoni
-
Publication number: 20210167745Abstract: A method for manufacturing a micromechanical layer structure, including: providing a first protective layer patterned to have at least one opening which is filled with sacrificial layer material; depositing a functional-layer layer structure; producing a first opening in the functional-layer layer structure to at least one opening of the first protective layer, so that in at least one of the layers of the functional-layer layer structure; depositing a second protective layer so that the first opening is filled with material of the second protective layer; patterning the second protective layer and the filled first opening to have a second opening to the first protective layer, the second opening having the same or a lesser width than the first opening; removing sacrificial layer material at least in the opening of the first protective layer; and removing protective layer material at least in the second opening.Type: ApplicationFiled: December 6, 2018Publication date: June 3, 2021Inventor: Stefan Majoni
-
Patent number: 10889491Abstract: A method for producing a micromechanical element includes producing a micromechanical structure, the micromechanical structure having: a functional layer for a micromechanical element, a sacrifical layer at least partly surrounding the functional layer, and a closure cap on the sacrifical layer. The method further includes applying a cover layer on the micromechanical structure. The method further includes producing a grid structure in the cover layer. The method further includes producing a cavity below the grid structure, as access to the sacrifical layer. The method further includes at least partly removing the sacrifical layer. The method further includes applying a closure layer at least on the grid structure of the cover layer for the purpose of closing the access to the cavity.Type: GrantFiled: September 18, 2018Date of Patent: January 12, 2021Assignee: Robert Bosch GmbHInventors: Markus Kuhnke, Heiko Stahl, Stefan Majoni
-
Patent number: 10643896Abstract: A method for producing a via in a wafer includes providing a wafer, comprising silicon. The method includes producing a conductive region, in the form of a conductor track, preferably composed of polycrystalline silicon, in the wafer. The method includes producing a hole in the wafer such that the hole is fluidically connected to the conductive region and the sidewalls of the hole comprise silicon. The method includes applying a tungsten hexafluoride-resistant protective layer, produced from silicon oxide, in the region of the surface of the hole that is to be produced or has been produced, such that an opening of the hole is free of a protective layer. The method includes applying tungsten hexafluoride to the hole and the region of the opening of the hole by a reducing-agent-free vapor phase deposition process, preferably in the form of a CVD process, for producing the via.Type: GrantFiled: September 19, 2018Date of Patent: May 5, 2020Assignee: Robert Bosch GmbHInventors: Heiko Stahl, Jochen Reinmuth, Markus Kuhnke, Stefan Majoni, Timo Schary
-
Publication number: 20190096762Abstract: A method for producing a via in a wafer includes providing a wafer, comprising silicon. The method includes producing a conductive region, in the form of a conductor track, preferably composed of polycrystalline silicon, in the wafer. The method includes producing a hole in the wafer such that the hole is fluidically connected to the conductive region and the sidewalls of the hole comprise silicon. The method includes applying a tungsten hexafluoride-resistant protective layer, produced from silicon oxide, in the region of the surface of the hole that is to be produced or has been produced, such that an opening of the hole is free of a protective layer. The method includes applying tungsten hexafluoride to the hole and the region of the opening of the hole by a reducing-agent-free vapor phase deposition process, preferably in the form of a CVD process, for producing the via.Type: ApplicationFiled: September 19, 2018Publication date: March 28, 2019Inventors: Heiko Stahl, Jochen Reinmuth, Markus Kuhnke, Stefan Majoni, Timo Schary
-
Publication number: 20190092628Abstract: A method for producing a micromechanical element includes producing a micromechanical structure, the micromechanical structure having: a functional layer for a micromechanical element, a sacrifical layer at least partly surrounding the functional layer, and a closure cap on the sacrifical layer. The method further includes applying a cover layer on the micromechanical structure. The method further includes producing a grid structure in the cover layer. The method further includes producing a cavity below the grid structure, as access to the sacrifical layer. The method further includes at least partly removing the sacrifical layer. The method further includes applying a closure layer at least on the grid structure of the cover layer for the purpose of closing the access to the cavity.Type: ApplicationFiled: September 18, 2018Publication date: March 28, 2019Inventors: Markus Kuhnke, Heiko Stahl, Stefan Majoni
-
Publication number: 20170358736Abstract: A method for manufacturing a Hall sensor, an insulation layer being initially applied to a wafer including an ASIC or integrated into the wafer, a Hall layer, for example, made of InSb or another III-V semiconductor material, being situated thereon, and this Hall layer being at least sectionally recrystallized with the aid of a laser. The insulation layer may be porous or may include a cavity or reflective layer for thermal protection of the ASIC.Type: ApplicationFiled: January 13, 2016Publication date: December 14, 2017Applicant: Robert Bosch GmbHInventors: Stefan Majoni, Christian Patak