Patents by Inventor Stefan Martin Pfnuer

Stefan Martin Pfnuer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10209464
    Abstract: An optical transmitter may include a chip stack that includes an electrical IC that is mounted using solder balls to a photonic chip. These solder connections permit the electrical IC and the photonic chip to communicate. In addition, the transmitter may include a PCB coupled to the stack so that electrical signals in the PCB are transmitted to the IC and photonic chip (and vice versa). Instead of coupling the PCB to the stack using wire bonds attached to pads on a surface of the photonic chip, at least a portion of the PCB is disposed between the photonic chip and electrical IC. The PCB may also include bond pads used to form a direct solder connection to the electrical IC. As such, the electrical IC may include direct solder connections to both the PCB and the photonic chip.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: February 19, 2019
    Assignee: Cisco Technology, Inc.
    Inventors: Stefan Martin Pfnuer, Matthew Joseph Traverso, Bipin Dama
  • Patent number: 10048455
    Abstract: Embodiments herein include an optical system that passively aligns a fiber array connector (FAC) to a waveguide in a photonic chip. An underside of the FAC is etched to include multiple grooves along a common axis or plane. Some of these grooves are used to attach optical cables, or more specifically, the fibers of optical cables to the FAC. To do so, the fibers are placed in the grooves and a lid is disposed on the underside of the fibers to hold the fibers in the grooves. The optical system uses other grooves in the FAC to mate with ridges in the photonic chip in order to mechanically couple the FAC to the photonic chip. By registering respective ridges in the photonic chip with grooves in the FAC, the FAC is passively aligned to the photonic chip along at least one optical axis.
    Type: Grant
    Filed: January 18, 2016
    Date of Patent: August 14, 2018
    Assignee: Cisco Technology, Inc.
    Inventor: Stefan Martin Pfnuer
  • Patent number: 9939580
    Abstract: Embodiments include an optical apparatus and associated method of assembling. The optical apparatus comprises a substrate defining a first surface and a channel formed relative thereto, the substrate including one or more waveguides extending to a sidewall partly defining the channel, a plurality of first electrical contacts formed on the first surface. The optical apparatus further comprises a carrier member defining a second surface and at least a third surface, the second surface coupled with the first surface of the substrate. The optical apparatus further at least one optical component coupled with the second surface and at least partly disposed within the channel, wherein the at least one optical component is optically coupled with the one or more waveguides and electrically connected with the first electrical contacts via a plurality of second electrical contacts at the third surface of the carrier member.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: April 10, 2018
    Assignee: Cisco Technology, Inc.
    Inventors: Stefan Martin Pfnuer, Matthew Joseph Traverso, Vipulkumar Patel
  • Patent number: 9921378
    Abstract: An optical device may include an optical bench used align a photonic chip to a receptacle. In one embodiment, a surface of the optical bench defines an alignment plane. When a fiber stub in the receptacle is disposed on the surface, an optical path in the stub is parallel with the alignment plane. By disposing the photonic chip on the same surface, the chip and the stub can be aligned such that optical signals can be transmitted between the stub and an optical component (e.g., light source or waveguide) in the photonic chip. In one embodiment, the optical path in the stub and the optical component may have the same height relative to the optical bench. Moreover, the optical device may include a direct thermal connection between the assembly and the heat sink, and thus, have better thermal coupling relative to using thermal pads.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: March 20, 2018
    Assignee: Cisco Technology, Inc.
    Inventors: Stefan Martin Pfnuer, Chris Kiyoshi Togami
  • Publication number: 20180011247
    Abstract: Embodiments include an optical apparatus and associated method of assembling. The optical apparatus comprises a substrate defining a first surface and a channel formed relative thereto, the substrate including one or more waveguides extending to a sidewall partly defining the channel, a plurality of first electrical contacts formed on the first surface. The optical apparatus further comprises a carrier member defining a second surface and at least a third surface, the second surface coupled with the first surface of the substrate. The optical apparatus further at least one optical component coupled with the second surface and at least partly disposed within the channel, wherein the at least one optical component is optically coupled with the one or more waveguides and electrically connected with the first electrical contacts via a plurality of second electrical contacts at the third surface of the carrier member.
    Type: Application
    Filed: July 6, 2016
    Publication date: January 11, 2018
    Inventors: Stefan Martin PFNUER, Matthew Joseph TRAVERSO, Vipulkumar PATEL
  • Patent number: 9851509
    Abstract: Embodiments described herein include an apparatus for passive alignment of one or more optical fibers with photonic circuitry. Generally, the apparatus includes a substrate that defines a channel configured to receive an engagement portion of a ferrule member. The apparatus further includes deformable and/or non-deformable members within the channel that form alignment faces arranged at opposite ends of the channel. The alignment faces can deform and/or limit the movement of the engagement portion of the ferrule member in order to align the optical fibers along a first dimension. A top surface of the substrate may be configured to engage with one or more lateral surfaces of the ferrule member when the engagement portion is received into the channel, thereby aligning the optical fibers along a second dimension.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: December 26, 2017
    Assignee: Cisco Technology, Inc.
    Inventor: Stefan Martin Pfnuer
  • Publication number: 20170285270
    Abstract: Embodiments described herein include an apparatus for passive alignment of one or more optical fibers with photonic circuitry. Generally, the apparatus includes a substrate that defines a channel configured to receive an engagement portion of a ferrule member. The apparatus further includes deformable and/or non-deformable members within the channel that form alignment faces arranged at opposite ends of the channel. The alignment faces can deform and/or limit the movement of the engagement portion of the ferrule member in order to align the optical fibers along a first dimension. A top surface of the substrate may be configured to engage with one or more lateral surfaces of the ferrule member when the engagement portion is received into the channel, thereby aligning the optical fibers along a second dimension.
    Type: Application
    Filed: March 31, 2016
    Publication date: October 5, 2017
    Inventor: Stefan Martin PFNUER
  • Publication number: 20170205592
    Abstract: Embodiments herein include an optical system that passively aligns a fiber array connector (FAC) to a waveguide in a photonic chip. An underside of the FAC is etched to include multiple grooves along a common axis or plane. Some of these grooves are used to attach optical cables, or more specifically, the fibers of optical cables to the FAC. To do so, the fibers are placed in the grooves and a lid is disposed on the underside of the fibers to hold the fibers in the grooves. The optical system uses other grooves in the FAC to mate with ridges in the photonic chip in order to mechanically couple the FAC to the photonic chip. By registering respective ridges in the photonic chip with grooves in the FAC, the FAC is passively aligned to the photonic chip along at least one optical axis.
    Type: Application
    Filed: January 18, 2016
    Publication date: July 20, 2017
    Inventor: STEFAN MARTIN PFNUER
  • Patent number: 9692522
    Abstract: Embodiments herein describe an optical receiver that demultiplexes a multi-wavelength optical signal into a plurality of optical signals with respective wavelengths. Stated differently, the various wavelengths in the received optical signal are separated into different optical signals with different wavelengths. In one embodiment, the optical receiver includes a plurality of optical filters that is aligned with a mirror to perform the demultiplexing function. The embodiments herein disclose optical receivers where the optical components performing the demultiplexing function using a ball lens aligned with optical filters.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: June 27, 2017
    Assignee: Cisco Technology, Inc.
    Inventors: Stefan Martin Pfnuer, Pang-Chen Sun
  • Patent number: 9628185
    Abstract: Described herein is an optical transmitter that includes an RF signal path that is, at least partially, parallel with an optical signal path. In one embodiment, an electrical transmission element, which defines the RF signal path, is disposed between a laser emitting the optical signal and a side wall of a package containing the optical transmitter. Although the RF and optical signals may propagate along different planes within the optical transmitter, both signals are received at an optical modulator. Using the RF signal, the optical modulator modulates the optical signal (e.g., a continuous wave) to generate a modulated optical signal. The optical modulator then outputs the modulated signal to a receptacle coupled to a light carrying medium such as a fiber optic cable.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: April 18, 2017
    Assignee: Cisco Technology, Inc.
    Inventors: Stefan Martin Pfnuer, Matthew Joseph Traverso
  • Patent number: 9476763
    Abstract: An apparatus is provided in which a photodiode supported on a planar light wave circuit assembly and arranged such that a photosensitive portion of the photodiode is aligned along an optical path from the output of the planar light wave circuit to the photodiode of the planar light wave circuit assembly. The photodiode is arranged such that a spot size of light output from the planar light wave circuit is incident on the photosensitive portion such that an optical signal transmitted by the light output is converted to an electric signal by the photodiode. A mounting structure is arranged between the planar light wave circuit assembly and the photodiode in order to support the photodiode on the planar light wave circuit assembly. The optical path of the light output from the planar light wave circuit does not contain any refractive optical elements.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: October 25, 2016
    Assignee: Cisco Technology, Inc.
    Inventors: Ravinder Kachru, Stefan Martin Pfnuer, Pangchen Sun
  • Publication number: 20160308622
    Abstract: Embodiments herein describe an optical receiver that demultiplexes a multi-wavelength optical signal into a plurality of optical signals with respective wavelengths. Stated differently, the various wavelengths in the received optical signal are separated into different optical signals with different wavelengths. In one embodiment, the optical receiver includes a plurality of optical filters that is aligned with a mirror to perform the demultiplexing function. The embodiments herein disclose optical receivers where the optical components performing the demultiplexing function using a ball lens aligned with optical filters.
    Type: Application
    Filed: April 15, 2015
    Publication date: October 20, 2016
    Inventors: Stefan Martin PFNUER, Pang-Chen SUN
  • Publication number: 20160306118
    Abstract: An optical device may include an optical bench used align a photonic chip to a receptacle. In one embodiment, a surface of the optical bench defines an alignment plane. When a fiber stub in the receptacle is disposed on the surface, an optical path in the stub is parallel with the alignment plane. By disposing the photonic chip on the same surface, the chip and the stub can be aligned such that optical signals can be transmitted between the stub and an optical component (e.g., light source or waveguide) in the photonic chip. In one embodiment, the optical path in the stub and the optical component may have the same height relative to the optical bench.
    Type: Application
    Filed: April 17, 2015
    Publication date: October 20, 2016
    Inventors: Stefan Martin PFNUER, Chris Kiyoshi TOGAMI
  • Publication number: 20160109668
    Abstract: An optical transmitter may include a chip stack that includes an electrical IC that is mounted using solder balls to a photonic chip. These solder connections permit the electrical IC and the photonic chip to communicate. In addition, the transmitter may include a PCB coupled to the stack so that electrical signals in the PCB are transmitted to the IC and photonic chip (and vice versa). Instead of coupling the PCB to the stack using wire bonds attached to pads on a surface of the photonic chip, at least a portion of the PCB is disposed between the photonic chip and electrical IC. The PCB may also include bond pads used to form a direct solder connection to the electrical IC. As such, the electrical IC may include direct solder connections to both the PCB and the photonic chip.
    Type: Application
    Filed: October 17, 2014
    Publication date: April 21, 2016
    Inventors: Stefan Martin PFNUER, Matthew Joseph TRAVERSO, Bipin DAMA
  • Publication number: 20160112137
    Abstract: Described herein is an optical transmitter that includes an RF signal path that is, at least partially, parallel with an optical signal path. In one embodiment, an electrical transmission element, which defines the RF signal path, is disposed between a laser emitting the optical signal and a side wall of a package containing the optical transmitter. Although the RF and optical signals may propagate along different planes within the optical transmitter, both signals are received at an optical modulator. Using the RF signal, the optical modulator modulates the optical signal (e.g., a continuous wave) to generate a modulated optical signal. The optical modulator then outputs the modulated signal to a receptacle coupled to a light carrying medium such as a fiber optic cable.
    Type: Application
    Filed: October 17, 2014
    Publication date: April 21, 2016
    Inventors: Stefan Martin PFNUER, Matthew Joseph TRAVERSO
  • Publication number: 20150198478
    Abstract: An apparatus is provided in which a photodiode supported on a planar light wave circuit assembly and arranged such that a photosensitive portion of the photodiode is aligned along an optical path from the output of the planar light wave circuit to the photodiode of the planar light wave circuit assembly. The photodiode is arranged such that a spot size of light output from the planar light wave circuit is incident on the photosensitive portion such that an optical signal transmitted by the light output is converted to an electric signal by the photodiode. A mounting structure is arranged between the planar light wave circuit assembly and the photodiode in order to support the photodiode on the planar light wave circuit assembly. The optical path of the light output from the planar light wave circuit does not contain any refractive optical elements.
    Type: Application
    Filed: January 15, 2014
    Publication date: July 16, 2015
    Applicant: Cisco Technology, Inc.
    Inventors: Ravinder Kachru, Stefan Martin Pfnuer, Pangchen Sun
  • Patent number: 8622626
    Abstract: Fiber optic connectors for use in connecting and aligning two optical fibers. In one example embodiment, a fiber optic connector includes a body, a cylindrical split sleeve at least partially positioned within the body, and a shell at least partially positioned within the body and surrounding the split sleeve. The body defines an internal port and an external port. The split sleeve defines a slot along the length of the split sleeve and has first and second open ends. The first end is configured to receive and grip a ferrule of an internal optical fiber and the second end is configured to receive and grip a ferrule of an external optical fiber. The portion of the shell surrounding the first end has a greater inside clearance than the portion of the shell surrounding the second end.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: January 7, 2014
    Assignee: Finisar Corporation
    Inventor: Stefan Martin Pfnuer
  • Publication number: 20120155808
    Abstract: Fiber optic connectors for use in connecting and aligning two optical fibers. In one example embodiment, a fiber optic connector includes a body, a cylindrical split sleeve at least partially positioned within the body, and a shell at least partially positioned within the body and surrounding the split sleeve. The body defines an internal port and an external port. The split sleeve defines a slot along the length of the split sleeve and has first and second open ends. The first end is configured to receive and grip a ferrule of an internal optical fiber and the second end is configured to receive and grip a ferrule of an external optical fiber. The portion of the shell surrounding the first end has a greater inside clearance than the portion of the shell surrounding the second end.
    Type: Application
    Filed: June 21, 2011
    Publication date: June 21, 2012
    Applicant: FINISAR CORPORATION INC.
    Inventor: Stefan Martin Pfnuer