Patents by Inventor Stefan Maurer
Stefan Maurer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11890600Abstract: The present disclosure provides Low Temperature NOx-Absorber (LT-NA) catalyst compositions, catalyst articles, and an emission treatment system for treating an exhaust gas, each including the LT-NA catalyst compositions. Further provided are methods for reducing a NOx level in an exhaust gas stream using the LT-NA catalyst articles. In particular, the LT-NA catalyst compositions include a first zeolite, a first palladium component, and a plurality of platinum nanoparticles. The LT-NA catalyst compositions exhibit enhanced regeneration efficiency with respect to NOx adsorption capacity, even after hydrothermal aging.Type: GrantFiled: October 19, 2020Date of Patent: February 6, 2024Assignee: BASF CorporationInventors: Xinyi Wei, Evan Vincent Miu, Xiaoming Xu, Jia Cheng Liu, Stefan Maurer
-
Patent number: 11660586Abstract: A process for preparing a catalyst comprising a zeolitic material comprising copper, the process comprising (i) preparing an aqueous mixture comprising water, a zeolitic material comprising copper, a source of copper other than the zeolitic material comprising copper, and a non-zeolitic oxidic material selected from the group consisting of alumina, silica, titania, zirconia, ceria, a mixed oxide comprising one or more of Al, Si, Ti, Zr, and Ce and a mixture of two or more thereof; (ii) disposing the mixture obtained in (i) on the surface of the internal walls of a substrate comprising an inlet end, an outlet end, a substrate axial length extending from the inlet end to the outlet end and a plurality of passages defined by internal walls of the substrate extending therethrough; and optionally drying the substrate comprising the mixture disposed thereon; (iii) calcining the substrate obtained in (ii).Type: GrantFiled: October 30, 2019Date of Patent: May 30, 2023Assignee: BASF CorporationInventors: Matthias Peter, Karifala Dumbuya, Miriam Schubert, Ahmad Moini, Yu Dai, Stefan Maurer, Haiyang Zhu, Yi Liu, Wen-Mei Xue, Ming-Ming Wei, Maria Heenemann
-
Patent number: 11542170Abstract: The present invention relates to a process for the calcination of a zeolitic material, wherein said process comprises the steps of (i) providing a zeolitic material comprising YO2 and optionally further comprising X2O3 in its framework structure in the form of a powder and/or of a suspension of the zeolitic material in a liquid, wherein Y stands for a tetravalent element and X stands for a trivalent element; (ii) atomization of the powder and/or of the suspension of the zeolitic material provided in (i) in a gas stream for obtaining an aerosol; (iii) calcination of the aerosol obtained in (ii) for obtaining a calcined powder; as well as to a zeolitic material obtainable and/or obtained according the inventive process, and to its use as a molecular sieve, as an adsorbent, for ion-exchange, as a catalyst, and/or as a catalyst support.Type: GrantFiled: March 31, 2021Date of Patent: January 3, 2023Assignee: BASF SEInventors: Benedikt Kalo, Thomas Geiger, Rene Koenig, Ulrich Mueller, Stefan Maurer
-
Publication number: 20220410133Abstract: The present disclosure provides Low Temperature NOx-Absorber (LT-NA) catalyst compositions, catalyst articles, and an emission treatment system for treating an exhaust gas, each including the LT-NA catalyst compositions. Further provided are methods for reducing a NOx level in an exhaust gas stream using the LT-NA catalyst articles. In particular, the LT-NA catalyst compositions include a first zeolite, a first palladium component, and a plurality of platinum nanoparticles. The LT-NA catalyst compositions exhibit enhanced regeneration efficiency with respect to NOx adsorption capacity, even after hydrothermal aging.Type: ApplicationFiled: October 19, 2020Publication date: December 29, 2022Inventors: Xinyi WEI, Evan Vincent MIU, Xiaoming XU, Jia-Cheng LIU, Stefan MAURER
-
Patent number: 11511228Abstract: The present invention relates generally to the field of exhaust treatment systems for purifying exhaust gas discharged from a lean burn engine. The exhaust treatment system comprises a Diesel Oxidation Catalyst (DOC), a Catalyzed Soot Filter (CSF), a reductant injector, an AEI zeolite based Selective Catalyzed Reduction (SCR) catalyst and an Ammonia Oxidation Catalyst (AMOX) downstream to the AEI zeolite based SCR catalyst.Type: GrantFiled: October 24, 2019Date of Patent: November 29, 2022Assignee: BASF CorporationInventors: Stefan Maurer, Jia Di Zhang, Yu Dai, Yu Fen Hao, Ming Ming Wei, Teng Shen
-
Patent number: 11413607Abstract: The present disclosure is directed to a Low Temperature NOx-Absorber (LT-NA) catalyst composition which exhibits NOx adsorption in a broad temperature and space velocity range, and shifts NOx desorption to a desired temperature range. In particular, the LT-NA composition includes a large pore zeolite containing a palladium component and a small or medium pore zeolite containing a palladium component. Further provided is a catalyst article including the LT-NA catalyst composition, an emission treatment system for treating an exhaust gas including the catalyst article, and methods for reducing a NOx level in an exhaust gas stream using the catalyst article.Type: GrantFiled: May 29, 2019Date of Patent: August 16, 2022Assignee: BASF CorporationInventors: Jia Cheng Liu, Evan Vincent Miu, Xiaoming Xu, Xinyi Wei, Stefan Maurer
-
Publication number: 20220143579Abstract: The invention relates to a selective ammonia oxidation catalysts comprising a platinum group metal and a support comprising TiO2 doped with 0-10% by weight of SiO2, WO3, ZrO2, Y2O3, La2O3, or a mixture thereof. The invention further comprises methods for the manufacture of the selective ammonia oxidation catalysts, and integrated catalyst systems comprising the selective ammonia oxidation catalysts for treating an exhaust gas stream.Type: ApplicationFiled: April 8, 2020Publication date: May 12, 2022Inventors: Yu Fen HAO, Yuejin LI, Stanley A. ROTH, Jan Martin BECKER, Stefan MAURER
-
Patent number: 11298656Abstract: A catalyst for the selective catalytic reduction of NOx comprises a zeolitic material which comprises (A) one or more zeolites having a GME framework structure containing YO2 and X2O3, and optionally further comprises one or more zeolites having a CHA framework structure containing YO2 and X2O3, and/or comprises, (B) one or more zeolite intergrowth phases of one or more zeolites having a GME framework structure containing YO2 and X2O3 and one or more zeolites having a CHA framework structure containing YO2 and X2O3, wherein Y is a tetravalent element, and X is a trivalent element, and the zeolitic material contains Cu and/or Fe as non-framework elements in an amount ranging from 0.1 to 15 wt. % calculated as the element and based on 100 wt. % of YO contained in the zeolitic material. Also provided are a process for its preparation, and a use in a method for the selective catalytic reduction of NOx.Type: GrantFiled: June 2, 2017Date of Patent: April 12, 2022Assignee: BASF CorporationInventors: Mathias Feyen, Ulrich Mueller, Faruk Oezkirim, Stefan Dumser, Natalia Trukhan, Michaela Maltry, Stefan Maurer
-
Publication number: 20220106192Abstract: A process for preparing an oxidic material comprising a zeolitic material having framework type AEI and a framework structure comprising a tetravalent element Y, a trivalent element X, and O, the process comprising preparing a synthesis mixture comprising water, a source of Y, a source of X comprising sodium, an AEI framework structure directing agent, and a source of sodium other than the source of X; and heating the synthesis mixture obtained from (i) to a temperature in the range of from 100 to 180° C. and keeping the synthesis mixture under autogenous pres-sure at a temperature in this range for a time in the range of at least 6 h, obtaining the oxidic material comprising a zeolitic material having framework type AEI and a framework structure comprising a tetravalent element Y, a trivalent element X, and O, comprised in its mother liquor; wherein the AEI framework structure directing agent according to (i) comprises a N, N-diethyl-2,6-dimethylpiperidinium cation.Type: ApplicationFiled: January 21, 2020Publication date: April 7, 2022Inventors: Andrei-Nicolae Parvulescu, Feng-Shou Xiao, Xiangju Meng, Qinming Wu, Yu Dai, Stefan Maurer, Ulrich Mueller, Hao XU
-
Publication number: 20220064011Abstract: The present invention relates to a process for the production of a zeolitic material having an MWW framework structure comprising YO2 and B2O3, wherein Y stands for a tetravalent element, said process comprising (i) preparing a mixture comprising one or more sources for YO2, one or more sources for B2O3, one or more organotemplates, and seed crystals, (ii) crystallizing the mixture obtained in (i) for obtaining a layered precursor of the MWW framework structure, (iii) calcining the layered precursor obtained in (ii) for obtaining the zeolitic material having an MWW framework structure, wherein the one or more organotemplates have the formula (I) R1R2R3N ??(I) wherein R1 is (C5-C8)cycloalkyl, and wherein R2 and R3 are independently from each other H or alkyl, and wherein the mixture prepared in (i) and crystallized in (ii) contains 35 wt.-% or less of H2O based on 100 wt.Type: ApplicationFiled: September 21, 2021Publication date: March 3, 2022Inventors: Andrei-Nicolae PARVULESCU, Ulrich Müller, Stefan Maurer, Yu Dai, Feng-Shou Xiao, Xiangju Meng, Yeqing Wang
-
Publication number: 20220032277Abstract: A process for preparing a catalyst comprising a zeolitic material comprising copper, the process comprising (i) preparing an aqueous mixture comprising water, a zeolitic material comprising copper, a source of copper other than the zeolitic material comprising copper, and a non-zeolitic oxidic material selected from the group consisting of alumina, silica, titania, zirconia, ceria, a mixed oxide comprising one or more of Al, Si, Ti, Zr, and Ce and a mixture of two or more thereof; (ii) disposing the mixture obtained in (i) on the surface of the internal walls of a substrate comprising an inlet end, an outlet end, a substrate axial length extending from the inlet end to the outlet end and a plurality of passages defined by internal walls of the substrate extending therethrough; and optionally drying the substrate comprising the mixture disposed thereon; (iii) calcining the substrate obtained in (ii).Type: ApplicationFiled: October 30, 2019Publication date: February 3, 2022Applicant: BASF CorporationInventors: Matthias PETER, Karifala DUMBUYA, Miriam SCHUBERT, Ahmad MOINI, Yu DAI, Stefan MAURER, Haiyang ZHU, Yi LIU, Wen-Mei XUE, Ming-Ming WEI, Maria HEENEMANN
-
Publication number: 20210387145Abstract: The present invention relates generally to the field of exhaust treatment systems for purifying exhaust gas discharged from a lean burn engine. The exhaust treatment system comprises a Diesel Oxidation Catalyst (DOC), a Catalyzed Soot Filter (CSF), a reductant injector, an AEI zeolite based Selective Catalyzed Reduction (SCR) catalyst and an Ammonia Oxidation Catalyst (AMOX) downstream to the AEI zeolite based SCR catalyst.Type: ApplicationFiled: October 24, 2019Publication date: December 16, 2021Applicant: BASF CorporationInventors: Stefan MAURER, Jia Di ZHANG, Yu DAI, Yu Fen HAO, Ming Ming WEI, Teng SHEN
-
Publication number: 20210370278Abstract: The present disclosure relates to a process preparing a zeolitic material having an AEI-type framework structure, wherein the framework structure comprises SiO2 and X2O3 and X is a trivalent element, and wherein the process comprises: (1) preparing a mixture comprising one or more cationic structure directing agents comprising a heterocyclic amine ring, seed crystals, and a first zeolitic material comprising SiO2 and X2O3 in its framework structure and having an FAU-type framework structure; and (2) heating the mixture to obtain a second zeolitic material comprising SiO2 and X2O3 in its framework structure and having an AEI-type framework structure.Type: ApplicationFiled: November 15, 2019Publication date: December 2, 2021Inventors: Andrei-Nicolae PARVULESCU, Yu DAI, Stefan MAURER, Ulrich MUELLER, Indre THIEL
-
Patent number: 11155467Abstract: Described herein is a process for producing a zeolitic material having an MWW framework structure containing YO2 and B2O3, in which Y stands for a tetravalent element. The process includes the steps of (i) preparing a mixture containing one or more sources for YO2, one or more sources for B2O3, one or more organotemplates, and seed crystals, (ii) crystallizing the mixture obtained in (i) for obtaining a layered precursor of the MWW framework structure, and (iii) calcining the layered precursor obtained in (ii) for obtaining the zeolitic material having an MWW framework structure. Also disclosed herein are synthetic boron-containing zeolites obtain by the process and uses thereof.Type: GrantFiled: September 5, 2017Date of Patent: October 26, 2021Inventors: Andrei-Nicolae Parvulescu, Ulrich Mueller, Stefan Maurer, Yu Dai, Feng-Shou Xiao, Xiangju Meng, Yeqing Wang
-
Publication number: 20210221695Abstract: The present invention relates to a process for the calcination of a zeolitic material, wherein said process comprises the steps of (i) providing a zeolitic material comprising YO2 and optionally further comprising X2O3 in its framework structure in the form of a powder and/or of a suspension of the zeolitic material in a liquid, wherein Y stands for a tetravalent element and X stands for a trivalent element; (ii) atomization of the powder and/or of the suspension of the zeolitic material provided in (i) in a gas stream for obtaining an aerosol; (iii) calcination of the aerosol obtained in (ii) for obtaining a calcined powder; as well as to a zeolitic material obtainable and/or obtained according the inventive process, and to its use as a molecular sieve, as an adsorbent, for ion-exchange, as a catalyst, and/or as a catalyst support.Type: ApplicationFiled: March 31, 2021Publication date: July 22, 2021Inventors: Benedikt Kalo, Thomas Geiger, Rene Koenig, Ulrich Mueller, Stefan Maurer
-
Publication number: 20210213434Abstract: The present disclosure is directed to a Low Temperature NOx-Absorber (LT-NA) catalyst composition which exhibits NOx adsorption in a broad temperature and space velocity range, and shifts NOx desorption to a desired temperature range. In particular, the LT-NA composition includes a large pore zeolite containing a palladium component and a small or medium pore zeolite containing a palladium component. Further provided is a catalyst article including the LT-NA catalyst composition, an emission treatment system for treating an exhaust gas including the catalyst article, and methods for reducing a NOx level in an exhaust gas stream using the catalyst article.Type: ApplicationFiled: May 29, 2019Publication date: July 15, 2021Applicant: BASF CorporationInventors: Jia Cheng LIU, Evan Vincent MIU, Xiaoming XU, Xinyi WEI, Stefan MAURER
-
Patent number: 10995008Abstract: A process for the calcination of a zeolitic material, wherein the process contains the steps of (i) providing a zeolitic material containing YO2 and optionally further containing X2O3 in its framework structure in the form of a powder and/or of a suspension of the zeolitic material in a liquid, wherein Y stands for a tetravalent element and X stands for a trivalent element; (ii) atomization of the powder and/or of the suspension of the zeolitic material provided in (i) in a gas stream for obtaining an aerosol; and (iii) calcination of the aerosol obtained in (ii) for obtaining a calcined powder, a zeolitic material obtained by the above process, and its use as a molecular sieve, as an adsorbent, for ion-exchange, as a catalyst, and/or as a catalyst support.Type: GrantFiled: March 22, 2017Date of Patent: May 4, 2021Assignee: BASF SEInventors: Benedikt Kalo, Thomas Geiger, Rene Koenig, Ulrich Mueller, Stefan Maurer
-
Patent number: 10888838Abstract: The present invention relates to porous films comprising (A) from 51 wt.-% to 99.9 wt.-% based on the total weight of the film of at least one porous metal-organic framework material, the material comprising at least one at least bidentate organic compound coordinated to at least one metal ion; (B) from 0.1 wt.-% to 49 wt.-% based on the total weight of the film of at least one fibrillated fluoropolymer; and (C) 0 wt.-% to 48.9 wt.-% based on the total weight of the film of an additive component. The invention further relates to a composition for preparing such a film and its use.Type: GrantFiled: March 24, 2015Date of Patent: January 12, 2021Assignee: BASF SEInventors: Matthias G. Schwab, Stefan Maurer, Waldemar Bartuli, Ulrich Müller
-
Patent number: 10870583Abstract: A process for preparing a zeolitic material containing YO2 and X2O3, where Y and X represent a tetravalent element and a trivalent element, respectively, is described. The process includes (1) a step of preparing a mixture containing one or more structure directing agents, seed crystals, and a first zeolitic material containing YO2 and X2O3 and having FAU-, GIS-, MOR-, and/or LTA-type framework structures; and (2) a step of heating the mixture for obtaining a second zeolitic material containing YO2 and X2O3 and having a different framework structure than the first zeolitic material. The mixture prepared in (1) and heated in (2) contains 1000 wt % or less of H2O based on 100 wt % of YO2 in the framework structure of the first zeolitic material. A zeolitic material obtainable and/or obtained by the process and its use are also described.Type: GrantFiled: December 13, 2017Date of Patent: December 22, 2020Assignee: BASF SEInventors: Robert McGuire, Mathias Feyen, Ulrich Mueller, Xinhe Bao, Weiping Zhang, Dirk De Vos, Hermann Gies, Feng-Shou Xiao, Toshiyuki Yokoi, Ute Kolb, Bernd Marler, Chuan Shi, Xiulian Pan, Xiangju Meng, Stefan Maurer, Yu Dai, Yong Wang, Trees De Baerdemaeker
-
Publication number: 20200368685Abstract: The present invention relates to a process for the treatment of a gas stream containing nitrogen oxides comprising the steps of: (1) providing a gas stream containing one or more nitrogen oxides; (2) contacting the gas stream provided in step (1) with a transition metal containing zeolitic material having a BEA-type framework structure for reacting one or more of the nitrogen oxides; wherein the zeolitic material is obtainable from an organotemplate-free synthetic process, as well as to an apparatus for the treatment of a gas stream comprising containing nitrogen oxides.Type: ApplicationFiled: August 10, 2020Publication date: November 26, 2020Applicant: BASF SEInventors: Stephan DEUERLEIN, Stefan MAURER