Patents by Inventor Stefan Nusser

Stefan Nusser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220242667
    Abstract: A method includes: obtaining a task definition for a mobile robot, the task definition including (i) a position on an item support carried by the mobile robot, and (ii) an identifier of an item to be placed at the position to form a unit load with the item support; controlling the mobile robot carrying the item support to travel to a pick location for receiving the item from a picker; controlling an output device to render an indication of the position for the picker at the pick location; responsive to placement of the item at the position by the picker, controlling the mobile robot to travel to a handling location.
    Type: Application
    Filed: February 1, 2022
    Publication date: August 4, 2022
    Inventors: David Lin, David Dymesich, Uwe Meister, Mason Cole, Lonai Anthraper, Sarah Elliott, Louis Abastas, Robert Lang, Melonee Wise, Stefan Nusser, David Robson
  • Patent number: 11331804
    Abstract: A system for facility monitoring and reporting to improve safety using one or more robots includes: a network; a plurality of autonomous mobile robots operating in a facility, the robots configured to monitor facility operation, the robots further configured to detect a predetermined critical condition, the robots operably connected to the network; a server operably connected to the robots over the network; and an individual robot operably connected to the server over the network, the individual robot operating in the facility, the robots not comprising the individual robot, the individual robot configured to monitor facility operation; wherein the robots are configured to regularly produce a regular report under normal operating conditions, the report displaying data received from the server, wherein the robots are further configured to produce to the server a critical condition report upon occurrence of the critical condition.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: May 17, 2022
    Assignee: Fetch Robotics, Inc.
    Inventors: Niharika Arora, Melonee Wise, Brian Cairl, Carl Saldanha, Robert Chatman, III, Levon Avagyan, Aaron Hoy, Stefan Nusser, David Dymesich, David Robson
  • Publication number: 20210291367
    Abstract: A system for facility monitoring and reporting to improve safety using one or more robots includes: a network; a plurality of autonomous mobile robots operating in a facility, the robots configured to monitor facility operation, the robots further configured to detect a predetermined critical condition, the robots operably connected to the network; a server operably connected to the robots over the network; and an individual robot operably connected to the server over the network, the individual robot operating in the facility, the robots not comprising the individual robot, the individual robot configured to monitor facility operation; wherein the robots are configured to regularly produce a regular report under normal operating conditions, the report displaying data received from the server, wherein the robots are further configured to produce to the server a critical condition report upon occurrence of the critical condition.
    Type: Application
    Filed: June 7, 2021
    Publication date: September 23, 2021
    Applicant: Fetch Robotics, Inc.
    Inventors: Niharika Arora, Melonee Wise, Brian Cairl, Carl Saldanha, Robert Chatman, III, Levon Avagyan, Aaron Hoy, Stefan Nusser, David Dymesich, David Robson
  • Patent number: 11059176
    Abstract: A system for facility monitoring and reporting to improve safety using one or more robots includes: a network; a plurality of autonomous mobile robots operating in a facility, the robots configured to monitor facility operation, the robots further configured to detect a predetermined critical condition, the robots operably connected to the network; a server operably connected to the robots over the network; and an individual robot operably connected to the server over the network, the individual robot operating in the facility, the robots not comprising the individual robot, the individual robot configured to monitor facility operation; wherein the robots are configured to regularly produce a regular report under normal operating conditions, the report displaying data received from the server, wherein the robots are further configured to produce to the server a critical condition report upon occurrence of the critical condition.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: July 13, 2021
    Assignee: Fetch Robotics, Inc.
    Inventors: Niharika Arora, Melonee Wise, Brian Cairl, Carl Saldanha, Robert Chatman, III, Levon Avagyan, Aaron Hoy, Stefan Nusser, David Dymesich, David Robson
  • Patent number: 11059177
    Abstract: A system for facility monitoring and reporting to improve safety using one or more robots includes: a network; a plurality of autonomous mobile robots operating in a facility, the robots configured to monitor facility operation, the robots further configured to detect a predetermined critical condition, the robots operably connected to the network; a server operably connected to the robots over the network; and an individual robot operably connected to the server over the network, the individual robot operating in the facility, the robots not comprising the individual robot, the individual robot configured to monitor facility operation; wherein the robots are configured to regularly produce a regular report under normal operating conditions, the report displaying data received from the server, wherein the robots are further configured to produce to the server a critical condition report upon occurrence of the critical condition.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: July 13, 2021
    Assignee: Fetch Robotics, Inc.
    Inventors: Niharika Arora, Melonee Wise, Brian Cairl, Carl Saldanha, Robert Chatman, III, Levon Avagyan, Aaron Hoy, Stefan Nusser, David Dymesich, David Robson
  • Publication number: 20210205993
    Abstract: A system for facility monitoring and reporting to improve safety using one or more robots includes: a network; a plurality of autonomous mobile robots operating in a facility, the robots configured to monitor facility operation, the robots further configured to detect a predetermined critical condition, the robots operably connected to the network; a server operably connected to the robots over the network; and an individual robot operably connected to the server over the network, the individual robot operating in the facility, the robots not comprising the individual robot, the individual robot configured to monitor facility operation; wherein the robots are configured to regularly produce a regular report under normal operating conditions, the report displaying data received from the server, wherein the robots are further configured to produce to the server a critical condition report upon occurrence of the critical condition.
    Type: Application
    Filed: March 22, 2021
    Publication date: July 8, 2021
    Applicant: Fetch Robotics, Inc.
    Inventors: Niharika Arora, Melonee Wise, Brian Cairl, Carl Saldanha, Robert Chatman, III, Levon Avagyan, Aaron Hoy, Stefan Nusser, David Dymesich, David Robson
  • Publication number: 20210178595
    Abstract: A system for facility monitoring and reporting to improve safety using one or more robots includes: a network; a plurality of autonomous mobile robots operating in a facility, the robots configured to monitor facility operation, the robots further configured to detect a predetermined critical condition, the robots operably connected to the network; a server operably connected to the robots over the network; and an individual robot operably connected to the server over the network, the individual robot operating in the facility, the robots not comprising the individual robot, the individual robot configured to monitor facility operation; wherein the robots are configured to regularly produce a regular report under normal operating conditions, the report displaying data received from the server, wherein the robots are further configured to produce to the server a critical condition report upon occurrence of the critical condition.
    Type: Application
    Filed: December 16, 2020
    Publication date: June 17, 2021
    Applicant: Fetch Robotcs, Inc.
    Inventors: Niharika Arora, Melonee Wise, Brian Cairl, Carl Saldanha, Robert Chatman, Levon Avagyan, Aaron Hoy, Stefan Nusser, David Dymesich, David Robson
  • Patent number: 10052763
    Abstract: A system is provided, including one or more servers in communication with a robotic system. The one or more servers may be configured to receive operational data from the robotic system, and determine one or more operational performance metrics based on the received operational data. The system may also include a first computing device in communication with the robotic system including a workstation authoring software application configured to program the given task to be completed by the robotic system, and determine one or more subtasks required for the robotic system to perform the given task. The system may also include a second computing device in communication with the robotic system including an operational dashboard software application configured to control various operations of the robotic system, and provide for display a visual representation of the operational data and the operational performance metrics on an interface of the second computing device.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: August 21, 2018
    Assignee: X Development LLC
    Inventors: Stefan Nusser, Aaron Edsinger, Advait Jain, Anthony Jules
  • Patent number: 9969079
    Abstract: An example modular reconfigurable workcell for quick connection of peripherals is described. In one example, a modular reconfigurable workcell comprises modular docking bays on a surface of the workcell that support attachment of docking modules in a fixed geometric configuration, and respective modular docking bays include electrical connections for a variety of power and communication busses of the docking modules to be attached. The workcell also includes an electrical subsystem for coupling the communication busses between the modular docking bays and providing power circuitry to the modular docking bays, and structural features in the modular docking bays to enable insertion of the docking modules in the fixed geometric configuration. The workcell also includes a processor for determining a geometric calibration of attached peripherals based on a location and the orientation of corresponding docking modules attached to the modular docking bays and based on an identification of the attached peripherals.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: May 15, 2018
    Assignee: X Development LLC
    Inventors: Aaron Edsinger, Anthony Sean Jules, Stefan Nusser, Advait Jain, James Nicholas Vines
  • Patent number: 9934189
    Abstract: A method operable by a computing device is provided. The method may include receiving a request for a given task to be performed by a modular reconfigurable workcell. The method may also include determining one or more peripherals required to perform the given task. The method may also include determining an optimal placement of the one or more peripherals based on the given task, wherein the one or more peripherals are coupled to the workcell in a fixed geometric configuration based on the determined optimal placement. The method may also include determining a first calibration of the one or more peripherals based on the orientation of the one or more peripherals relative to the workcell, and determining a second calibration of the one or more peripherals based on the optimal placement of the one or more peripherals with respect to each other.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: April 3, 2018
    Assignee: X Development LLC
    Inventors: Advait Jain, Aaron Edsinger, Anthony Jules, Stefan Nusser, James Nicholas Vines
  • Patent number: 9927815
    Abstract: Example systems and methods may provide for a heterogeneous fleet of robotic devices for collaborative object processing in an environment, such as a warehouse. An example system includes a plurality of mobile robotic devices configured to transport one or more objects within an environment, a fixed robotic manipulator positioned within the environment that is configured to manipulate one or more objects within an area of reach of the fixed robotic manipulator, and a control system. The control system may be configured to cause one or more of the plurality of mobile robotic devices to deliver at least one object to at least one location within the area of reach of the fixed robotic manipulator, and to cause the fixed robotic manipulator to distribute the at least one object to a different one or more of the plurality of mobile robotic devices for delivery to one or more other locations within the environment.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: March 27, 2018
    Assignee: X Development LLC
    Inventors: Stefan Nusser, Troy Straszheim, John Zevenbergen, Ethan Rublee
  • Publication number: 20170308096
    Abstract: Example systems and methods may provide for a heterogeneous fleet of robotic devices for collaborative object processing in an environment, such as a warehouse. An example system includes a plurality of mobile robotic devices configured to transport one or more objects within an environment, a fixed robotic manipulator positioned within the environment that is configured to manipulate one or more objects within an area of reach of the fixed robotic manipulator, and a control system. The control system may be configured to cause one or more of the plurality of mobile robotic devices to deliver at least one object to at least one location within the area of reach of the fixed robotic manipulator, and to cause the fixed robotic manipulator to distribute the at least one object to a different one or more of the plurality of mobile robotic devices for delivery to one or more other locations within the environment.
    Type: Application
    Filed: July 13, 2017
    Publication date: October 26, 2017
    Inventors: Stefan Nusser, Troy Straszheim, John Zevenbergen, Ethan Rublee
  • Patent number: 9733646
    Abstract: Example systems and methods may provide for a heterogeneous fleet of robotic devices for collaborative object processing in an environment, such as a warehouse. An example system includes a plurality of mobile robotic devices configured to transport one or more objects within an environment, a fixed robotic manipulator positioned within the environment that is configured to manipulate one or more objects within an area of reach of the fixed robotic manipulator, and a control system. The control system may be configured to cause one or more of the plurality of mobile robotic devices to deliver at least one object to at least one location within the area of reach of the fixed robotic manipulator, and to cause the fixed robotic manipulator to distribute the at least one object to a different one or more of the plurality of mobile robotic devices for delivery to one or more other locations within the environment.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: August 15, 2017
    Assignee: X Development LLC
    Inventors: Stefan Nusser, Troy Straszheim, John Zevenbergen, Ethan Rublee
  • Patent number: 9688489
    Abstract: An example apparatus includes an enclosed rectangular container, including an openable first end and an openable second end. The apparatus further includes at least one first supporting base positioned proximate to the first end of the container that has an adjustable height in order to align a floor of the container with a trailer. The apparatus also includes at least one second supporting base positioned proximate to the second end of the container that has an adjustable height in order to align the floor of the container with a loading dock. The apparatus additionally includes a robotic manipulator connected to the floor of the container that is configured to move one or more objects between the trailer and the loading dock by moving the one or more objects through the container when the first end and the second end of the container are opened.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: June 27, 2017
    Assignee: X Development LLC
    Inventors: John Zevenbergen, Stefan Nusser, Troy Straszheim
  • Patent number: 9672184
    Abstract: A method operable by a computing device is provided. The method may include receiving a request for a given task to be performed by a modular reconfigurable workcell. The method may also include determining one or more peripherals required to perform the given task. The method may also include determining an optimal placement of the one or more peripherals based on the given task, wherein the one or more peripherals are coupled to the workcell in a fixed geometric configuration based on the determined optimal placement. The method may also include determining a first calibration of the one or more peripherals based on the orientation of the one or more peripherals relative to the workcell, and determining a second calibration of the one or more peripherals based on the optimal placement of the one or more peripherals with respect to each other.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: June 6, 2017
    Assignee: Redwood Robotics, Inc.
    Inventors: Advait Jain, Aaron Edsinger, Anthony Jules, Stefan Nusser, James Nicholas Vines
  • Patent number: 9649767
    Abstract: Methods and systems for distributing remote assistance to facilitate robotic object manipulation are provided herein. Regions of a model of objects in an environment of a robotic manipulator may be determined, where each region corresponds to a different subset of objects with which the robotic manipulator is configured to perform a respective task. Certain tasks may be identified, and a priority queue of requests for remote assistance associated with the identified tasks may be determined based on expected times at which the robotic manipulator will perform the identified tasks. At least one remote assistor device may then be requested, according to the priority queue, to provide remote assistance with the identified tasks. The robotic manipulator may then be caused to perform the identified tasks based on responses to the requesting, received from the at least one remote assistor device, that indicate how to perform the identified tasks.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: May 16, 2017
    Assignee: X Development LLC
    Inventors: Stefan Nusser, Ethan Rublee, Troy Donald Straszheim, Kevin William Watts, John William Zevenbergen
  • Patent number: 9561590
    Abstract: A system is provided, including one or more servers in communication with a robotic system. The one or more servers may be configured to receive operational data from the robotic system, and determine one or more operational performance metrics based on the received operational data. The system may also include a first computing device in communication with the robotic system including a workstation authoring software application configured to program the given task to be completed by the robotic system, and determine one or more subtasks required for the robotic system to perform the given task. The system may also include a second computing device in communication with the robotic system including an operational dashboard software application configured to control various operations of the robotic system, and provide for display a visual representation of the operational data and the operational performance metrics on an interface of the second computing device.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: February 7, 2017
    Assignee: Redwood Robotics, Inc.
    Inventors: Stefan Nusser, Aaron Edsinger, Advait Jain, Anthony Jules
  • Publication number: 20170021502
    Abstract: Methods and systems for distributing remote assistance to facilitate robotic object manipulation are provided herein. Regions of a model of objects in an environment of a robotic manipulator may be determined, where each region corresponds to a different subset of objects with which the robotic manipulator is configured to perform a respective task. Certain tasks may be identified, and a priority queue of requests for remote assistance associated with the identified tasks may be determined based on expected times at which the robotic manipulator will perform the identified tasks. At least one remote assistor device may then be requested, according to the priority queue, to provide remote assistance with the identified tasks. The robotic manipulator may then be caused to perform the identified tasks based on responses to the requesting, received from the at least one remote assistor device, that indicate how to perform the identified tasks.
    Type: Application
    Filed: October 5, 2016
    Publication date: January 26, 2017
    Inventors: Stefan Nusser, Ethan Rublee, Troy Donald Straszheim, Kevin William Watts, John William Zevenbergen
  • Patent number: 9505136
    Abstract: Examples for precision assembly of robotic components are described herein. A robotic manipulator may require the assembly and disassembly of its components. To enable efficient assembly of the robotic manipulator, an example assembly may include connection links between robotic components that enable functional and precise assembly. In one embodiment, an example assembly may include connection links having various structural features positioned incrementally at respective positions proximal to outside edges of the connection links for securing the connection links together in a fixed, immovable geometric configuration. In some instances, the connection links may further include electrical components or slots for electrical components of components for establishing electrical connections between the connection links within the assembly. Further, an example assembly may include a clamping component for providing axial force to secure the connection links in the precise configuration.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: November 29, 2016
    Assignee: Redwood Robotics
    Inventors: Stefan Nusser, Advait Jain, Anthony Jules, James Nicholas Vines, Aaron Edsinger, Attila Kabai
  • Patent number: 9486921
    Abstract: Methods and systems for distributing remote assistance to facilitate robotic object manipulation are provided herein. Regions of a model of objects in an environment of a robotic manipulator may be determined, where each region corresponds to a different subset of objects with which the robotic manipulator is configured to perform a respective task. Certain tasks may be identified, and a priority queue of requests for remote assistance associated with the identified tasks may be determined based on expected times at which the robotic manipulator will perform the identified tasks. At least one remote assistor device may then be requested, according to the priority queue, to provide remote assistance with the identified tasks. The robotic manipulator may then be caused to perform the identified tasks based on responses to the requesting, received from the at least one remote assistor device, that indicate how to perform the identified tasks.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: November 8, 2016
    Assignee: Google Inc.
    Inventors: Troy Donald Straszheim, Stefan Nusser, Kevin William Watts, Ethan Rublee, John William Zevenbergen