Patents by Inventor Stefan Popescu

Stefan Popescu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11511113
    Abstract: Techniques are disclosed related to increasing prior limits imposed on MR gradient switching speed (dB/dt) without causing significant discomfort or severe pain perception to patients. The technique disclosed herein do so by modifying the pulsing gradient fields that are ordinarily available for MR imaging protocols. Doing so stimulates the peripheral nerves and thus enables a quick, reversible, and complete inhibition of action potential propagation through the stimulated region of tissue, referred to as a nerve conduction block.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: November 29, 2022
    Assignees: Siemens Healthcare GmbH, The General Hospital Corporation
    Inventors: Stefan Popescu, Lawrence Wald, Bruce Rosen, Jason Stockmann
  • Patent number: 11506560
    Abstract: Examples provide for an apparatus, method, and computer program for comparing the output of sensor cells in an arrangement of sensor cells in an area A, including a set of at least two measurement units. A measurement unit includes at least two sensor cells, wherein at least one sensor cell of at least one measurement unit includes a sensitive sensor cell, which is sensitive with respect to a measured quantity. The sensor cells are intermixed with each other. The apparatus further includes means for selecting output signals of sensor cells of the arrangement and means for determining a measured quantity or determining an intact sensor cell by comparing output signals of different measurement units.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: November 22, 2022
    Assignee: Infineon Technologies AG
    Inventors: Victor Popescu-Stroe, Emanuel Stoicescu, Matthias Boehm, Constantin Crisu, Uwe Fakesch, Stefan Jahn, Erhard Landgraf, Janis Weidenauer, Bernhard Winkler
  • Patent number: 11474173
    Abstract: A magnetic resonance apparatus, for acquiring magnetic resonance data from a person who is asleep, includes a person support apparatus to provide a sleeping place; an acquisition arrangement including a radiofrequency coil arrangement for transmitting excitation pulses and for receiving magnetic resonance signals; and a controller, designed to operate the acquisition arrangement according to a magnetic resonance sequence for acquiring a magnetic resonance dataset from a region under examination of the person. The magnetic resonance apparatus includes a main magnetic field of strength less than 20 mT, in particular less than 10 mT, and the controller includes an acquisition unit for acquiring a magnetic resonance dataset via a prolonged magnetic resonance sequence having a total acquisition duration of more than one hour.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: October 18, 2022
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Markus Vester, Carmel Hayes, Stefan Popescu, Mathias Blasche, Matthias Gebhardt
  • Publication number: 20220308142
    Abstract: A magnetic resonance imaging device may include a field generator for generating at least one magnetic gradient field. The field generator may include a first magnet and a second magnet confining an imaging volume of the magnetic resonance imaging device in two spatial directions. The first magnet and the second magnet may be arranged asymmetrically with respect to the imaging volume. The magnetic resonance imaging device may be used to perform a method for acquiring an image of a diagnostically relevant body region of a patient.
    Type: Application
    Filed: March 28, 2022
    Publication date: September 29, 2022
    Inventors: Michael Mallett, Adrian Mark Thomas, Matthias Gebhardt, Stephan Biber, Andreas Krug, Stefan Popescu, Lars Lauer, Andreas Greiser
  • Patent number: 11454686
    Abstract: A gradient system for a magnetic resonance imaging system can include at least two examination areas using a common basic magnetic field and a number of gradient coils in the at least two examination areas, and a gradient controller configured such that it controls the electric current flowing through at least two gradient coils for similar gradient axes in different examination areas in a temporal synchronous manner.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: September 27, 2022
    Assignee: Siemens Healthcare GmbH
    Inventor: Stefan Popescu
  • Publication number: 20220252685
    Abstract: A MRI device including a main field unit for establishing a main magnetic field (MF) in an imaging region, a gradient coil assembly for generating a gradient field in the imaging region, a RF arrangement for sending excitation signals to and receiving MR signals from the imaging region, a field camera for determining MF information in the imaging region, the field camera comprising multiple MF sensors arranged at measurement positions enclosing the imaging region, and a controller. The controller is configured to receive sensor data for each measurement positions, from the sensor data, calculate the MF information for the imaging region, and implement a calibration and/or correction measure depending on the MF information. The field camera may be a vector-field camera acquiring vector-valued sensor data describing the MF at each measurement positions three-dimensionally. The controller may determine the MF information to three dimensionally describe the MF in the imaging region.
    Type: Application
    Filed: February 7, 2022
    Publication date: August 11, 2022
    Applicant: Siemens Healthcare GmbH
    Inventor: Stefan Popescu
  • Patent number: 11385308
    Abstract: The present disclosure relates to a magnetic resonance (MR) scanner and magnetic resonance imaging (MRI) system. The MR scanner includes a superconducting magnet, a superconducting quantum processor, a first cooling system surrounding the superconducting magnet, and a second cooling system surrounding the superconducting quantum processor. The second cooling system is embedded in the first cooling system.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: July 12, 2022
    Assignee: Siemens Healthcare GmbH
    Inventor: Stefan Popescu
  • Patent number: 11354829
    Abstract: The present disclosure is related to methods and systems for image reconstruction including accelerated forward transformation with an Artificial Neural Network (ANN).
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: June 7, 2022
    Assignee: Siemens Healthcare GmbH
    Inventor: Stefan Popescu
  • Patent number: 11340321
    Abstract: A magnetic resonance tomography system can include a basic field magnet arrangement configured to generate a basic magnetic field (B0), and spatially separated measurement stations (M1, M2, M3, M4, M5, M6, N5, M6, Mp, Ms). The magnetic resonance tomography system can use the intended basic magnetic field (B0) collectively for the measurement stations.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: May 24, 2022
    Assignee: Siemens Healthcare GmbH
    Inventor: Stefan Popescu
  • Patent number: 11269034
    Abstract: A basic field magnet arrangement for a magnetic resonance tomography system can include a plurality of basic field magnet segments spatially separated from one another, each being configured to generate an intended magnetic field having a defined segment main field direction. At least two basic magnet segments of the plurality of the basic field magnet segments are arranged relative to one another such that the respective segment main field directions of their intended magnetic fields extend at a deflection angle to one another such that the intended magnetic fields of the at least two basic field magnet segments produce an intended basic magnetic field. The intended basic magnetic field including a basic magnet main field direction can have a ring-shaped profile.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: March 8, 2022
    Assignee: Siemens Healthcare GmbH
    Inventor: Stefan Popescu
  • Patent number: 11243277
    Abstract: The disclosure relates to a field camera and a method for measuring a magnetic field distribution using a magnetic resonance tomograph and the field camera. The field camera has a number of samples, which are distributed over a spatial volume to be measured, and a number of receive antennas. In an act of the method, a sensitivity matrix for the receive antennas, for each sample at each receive antenna, is captured using the magnetic resonance tomograph. In another act, antenna signals of the samples in a magnetic field to be measured are captured by the receive antennas, using the magnetic resonance tomograph. Finally, magnetic resonance signals of the individual samples are determined from the antenna signals as a function of the sensitivity matrix, using a controller. In a further act, the magnetic field strength at the location of the samples may be determined from the magnetic resonance signals.
    Type: Grant
    Filed: February 25, 2020
    Date of Patent: February 8, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Stephan Kannengiesser, Robert Rehner, Stefan Popescu, Gudrun Ruyters, Markus Vester
  • Publication number: 20220018912
    Abstract: A measurement device for measuring MR signals in a MR device may include first and second magnetometers and a controller. The first magnetometer may be a quantum spin magnetometer that includes a sensor material having a spin defect center including Zeeman splitting states dependent on an external magnetic field of the MR device, an optical excitation source and a microwave excitation source for electromagnetically exciting the sensor material, and a measurement sensor for measuring optical signals emitted by the excited sensor material element and depending on the Zeeman splitting states. The controller may be configured to determine a working frequency of the microwave excitation source of the first magnetometer from the total magnetic field strength measured by the second magnetometer, and control the microwave excitation source to use the determined working frequency as microwave frequency, such that the first magnetometer measures the MR signals as the optical signal.
    Type: Application
    Filed: July 16, 2021
    Publication date: January 20, 2022
    Applicant: Siemens Healthcare GmbH
    Inventor: Stefan Popescu
  • Publication number: 20210405136
    Abstract: The disclosure relates to a receiving unit configured for acquiring MR signals from an examination object in a magnetic resonance device. The receiving unit may include a detector unit comprising a light source and a first optical detector, a sensor unit comprising a first optical magnetometer, a first optical waveguide connecting the sensor unit to the light source, and a second optical waveguide connecting the sensor unit to the first optical detector.
    Type: Application
    Filed: June 30, 2021
    Publication date: December 30, 2021
    Applicant: Siemens Healthcare GmbH
    Inventors: Silvia Bettina Arroyo Camejo, Stefan Popescu, Markus Vester
  • Patent number: 11209513
    Abstract: In a method for compensating stray magnetic fields in a magnetic resonance imaging system with two or more examination areas: a value for a predefined first magnetic field to be applied in a first examination area, in addition to a basic magnetic field is provided; information defining a predefined sequence control pulse to be applied in a second examination area is provided; a stray magnetic field in the second examination area resulting from application of the first magnetic field in the first examination area is determined; a compensated sequence control pulse for the second examination area is calculated from the predefined sequence control pulse and the determined stray magnetic field; and the compensated sequence control pulse is applied to the second examination area.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: December 28, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Stefan Popescu, Markus Vester
  • Publication number: 20210341556
    Abstract: At least one example embodiment provides a magnetic resonance imaging system comprising a field generation unit and a supporting structure for providing structural support for the field generation unit, wherein the field generation unit comprises at least one magnet for generating a B0 magnetic field and an opening configured to provide access to an imaging volume positioned in the B0 magnetic field along at least one direction and wherein the at least one direction is angled with respect to a main direction of magnetic field lines of the B0 magnetic field in the imaging volume.
    Type: Application
    Filed: May 3, 2021
    Publication date: November 4, 2021
    Applicant: Siemens Healthcare GmbH
    Inventors: Michael MALLETT, Stefan POPESCU, Adrian Mark THOMAS, Stephan BIBER, Matthias GEBHARDT, Thorsten SPECKNER, Thomas BECK, Andreas GREISER
  • Publication number: 20210325493
    Abstract: The disclosure describes a magnet system for a magnetic resonance imaging system comprising a basic field magnet and a gradient system, wherein coils of the gradient system are positioned outside the area of a predefined basic magnetic field (B0) of the basic field magnet. The disclosure further describes a gradient system and a magnetic resonance imaging system with such a magnet system.
    Type: Application
    Filed: April 14, 2021
    Publication date: October 21, 2021
    Applicant: Siemens Healthcare GmbH
    Inventors: Rainer Kirsch, Stefan Popescu
  • Patent number: 11101025
    Abstract: A method includes receiving a first patient model of the patient, the first patient model including a first image dataset of the patient, the first image dataset being coordinated relative to a first coordinate system; receiving a second image dataset of the patient, the second image dataset being based on a medical imaging apparatus and being coordinated relative to a second coordinate system; determining a transformation function to transfer the second coordinate system into the first coordinate system; determining a transformed second image dataset based on the second image dataset and the transformation function; and providing a second patient model of the patient, the second patient model including the modified first image dataset.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: August 24, 2021
    Assignee: Siemens Healthcare GmbH
    Inventor: Stefan Popescu
  • Publication number: 20210208219
    Abstract: A magnetic resonance apparatus, for acquiring magnetic resonance data from a person who is asleep, includes a person support apparatus to provide a sleeping place; an acquisition arrangement including a radiofrequency coil arrangement for transmitting excitation pulses and for receiving magnetic resonance signals; and a controller, designed to operate the acquisition arrangement according to a magnetic resonance sequence for acquiring a magnetic resonance dataset from a region under examination of the person. The magnetic resonance apparatus includes a main magnetic field of strength less than 20 mT, in particular less than 10 mT, and the controller includes an acquisition unit for acquiring a magnetic resonance dataset via a prolonged magnetic resonance sequence having a total acquisition duration of more than one hour.
    Type: Application
    Filed: December 22, 2020
    Publication date: July 8, 2021
    Applicant: Siemens Healthcare GmbH
    Inventors: Markus VESTER, Carmel HAYES, Stefan POPESCU, Mathias BLASCHE, Matthias GEBHARDT
  • Patent number: 11047939
    Abstract: A magnetic resonance device comprising a gradient coil assembly having gradient coils is described. The gradient coils are supported by at least one cylindrical coil carrier for generating gradient fields. As part of the gradient coil assembly, at least one vibration sensor is provided for measuring vibrations of the gradient coil assembly at least in a radial direction of oscillation.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: June 29, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Peter Dietz, Annette Stein, Andreas Krug, Stefan Popescu
  • Publication number: 20210156941
    Abstract: In a method for compensating stray magnetic fields in a magnetic resonance imaging system with two or more examination areas: a value for a predefined first magnetic field to be applied in a first examination area, in addition to a basic magnetic field is provided; information defining a predefined sequence control pulse to be applied in a second examination area is provided; a stray magnetic field in the second examination area resulting from application of the first magnetic field in the first examination area is determined; a compensated sequence control pulse for the second examination area is calculated from the predefined sequence control pulse and the determined stray magnetic field; and the compensated sequence control pulse is applied to the second examination area.
    Type: Application
    Filed: November 23, 2020
    Publication date: May 27, 2021
    Applicant: Siemens Healthcare GmbH
    Inventors: Stefan Popescu, Markus Vester