Patents by Inventor Stefan Reinartz

Stefan Reinartz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230038385
    Abstract: New and/or improved coatings for porous substrates, including battery separators or separator membranes, and/or coated porous substrates, including coated battery separators, and/or batteries or cells including such coatings or coated separators, and/or related methods including methods of manufacture and/or of use thereof are disclosed. Also, new or improved coatings for porous substrates, including battery separators, which comprise at least a polymeric binder and heat-resistant particles with or without additional additives, materials or components, and/or to new or improved coated porous substrates, including battery separators, where the coating comprises at least a polymeric binder and heat-resistant particles with or without additional additives, materials or components are disclosed.
    Type: Application
    Filed: August 16, 2022
    Publication date: February 9, 2023
    Inventors: Michael B. Lane, Insik Jeon, Edward Kruger, Xiang Yu, Ronnie E. Smith, Stefan Reinartz, Junqing Ma
  • Patent number: 11495865
    Abstract: Described herein is a multilayer microporous film or membrane that may exhibit improved properties, including improved dielectric break down and strength, compared to prior monolayer or tri-layer microporous membranes of the same thickness. The preferred multilayer microporous membrane comprises microlayers and one or more lamination barriers. Also disclosed is a battery separator or battery comprising one or more of the multilayer microporous films or membranes. The inventive battery and battery separator is preferably safer and more robust than batteries and battery separators using prior monolayer and tri-layer microporous membranes. Also, described herein is a method for making the multilayer microporous separators, membranes or films described herein.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: November 8, 2022
    Assignee: Celgard, LLC
    Inventors: Kang Karen Xiao, Eric J. Penegar, Takahiko Kondo, Robert Nark, Eric R. White, Xiaomin Zhang, Kristoffer K. Stokes, Stefan Reinartz, Masaaki Okada
  • Patent number: 11437684
    Abstract: New and/or improved coatings for porous substrates, including battery separators or separator membranes, and/or coated porous substrates, including coated battery separators, and/or batteries or cells including such coatings or coated separators, and/or related methods including methods of manufacture and/or of use thereof are disclosed. Also, new or improved coatings for porous substrates, including battery separators, which comprise at least a polymeric binder and heat-resistant particles with or without additional additives, materials or components, and/or to new or improved coated porous substrates, including battery separators, where the coating comprises at least a polymeric binder and heat-resistant particles with or without additional additives, materials or components are disclosed.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: September 6, 2022
    Assignee: Celgard, LLC
    Inventors: Michael B. Lane, Insik Jeon, Edward Kruger, Xiang Yu, Ronnie E. Smith, Stefan Reinartz, Junqing Ma
  • Publication number: 20220216568
    Abstract: A coated battery separator is described herein. The coated battery separator includes a porous membrane with a coating on at least one side thereof, wherein the coated separator exhibits at least one of improved thickness uniformity of the coating and improved adhesion of the coating to the porous membrane. In some embodiments, the coated battery separator is thin or ultrathin. A method for forming a coated battery separator that exhibits the aforementioned properties is also described. The method may include steps of forming a coating and calendering the coating. In some embodiments, calendering is performed on a dried coating. In some embodiments, the coating is or includes a ceramic coating, a polymer coating, a sticky coating, a shutdown coating, or combinations thereof.
    Type: Application
    Filed: May 22, 2020
    Publication date: July 7, 2022
    Inventors: Stefan Reinartz, Katharine Chemelewski, Barry j. Summey, Robert Moran
  • Publication number: 20220181745
    Abstract: The instant disclosure or invention is preferably directed to a polyamide-imide coated membrane, separator membrane, or separator for a lithium battery such as a high energy or high voltage rechargeable lithium battery and the corresponding battery. The separator preferably includes a porous or microporous polyamide-imide coating or layer on at least one side of a polymeric microporous layer, membrane or film. The polyamide-imide coating or layer may include other polymers, additives, fillers, or the like. The polyamide-imide coating may be adapted, for example, to provide oxidation resistance, to block dendrite growth, to add dimensional and/or mechanical stability, to reduce shrinkage, to add high temperature performance (HTMI function), to prevent electronic shorting at temperatures above 200 deg C., and/or the like.
    Type: Application
    Filed: April 2, 2020
    Publication date: June 9, 2022
    Inventors: Zhengming Zhang, Changqing Wang Adams, Stefan Reinartz
  • Publication number: 20220115740
    Abstract: Described herein, are battery separators, comprising the following: a microporous polymeric film; and an optional coating layer on at least one side of the microporous polymeric film, wherein at least one of the microporous polymeric film and the optional coating comprises an additive. The additive is selected from the group consisting of a lubricating agent, a plasticizing agent, a nucleating agent, a shrinkage reducing agent, a surfactant, an SEI improving agent, a cathode protection agent, a flame retardant additive, LiPF6 salt stabilizer, an overcharge protector, an aluminum corrosion inhibitor, a lithium deposition agent or improver, or a solvation enhancer, an aluminum corrosion inhibitor, a wetting agent, and a viscosity improver. Also, described herein are batteries, including lithium-ion batteries, comprising one or more of the described separators. Methods for making the battery separators are also described.
    Type: Application
    Filed: November 1, 2021
    Publication date: April 14, 2022
    Inventors: Changqing Wang Adams, Kang Karen Xiao, Stefan Reinartz, Masaaki Okada, Brian R. Stepp, Yao Lu, Eric Robert White, Katharine Chemelewski
  • Publication number: 20220094019
    Abstract: Disclosed herein are battery separators that include a microporous membrane and a coating. The coating may comprise, consist, or consist essentially of polymeric components, inorganic components, or combinations thereof. The battery separators described herein are, among other things, thinner, stronger, and more wettable with electrolyte than some prior battery separators. The battery separators may be used in secondary or rechargeable batteries, including lithium ion batteries. The batteries may be used in vehicles or devices such as cell phones, tablets, laptops, and e-vehicles.
    Type: Application
    Filed: January 2, 2020
    Publication date: March 24, 2022
    Inventors: Insik Jeon, James Rapley, Xiang Yu, Fru Azeh, Stefan Reinartz, Zhengming Zhang
  • Patent number: 11165121
    Abstract: Described herein, are battery separators, comprising the following: a microporous polymeric film; and an optional coating layer on at least one side of the microporous polymeric film, wherein at least one of the microporous polymeric film and the optional coating comprises an additive. The additive is selected from the group consisting of a lubricating agent, a plasticizing agent, a nucleating agent, a shrinkage reducing agent, a surfactant, an SEI improving agent, a cathode protection agent, a flame retardant additive, LiPF6 salt stabilizer, an overcharge protector, an aluminum corrosion inhibitor, a lithium deposition agent or improver, or a solvation enhancer, an aluminum corrosion inhibitor, a wetting agent, and a viscosity improver. Also, described herein are batteries, including lithium-ion batteries, comprising one or more of the described separators. Methods for making the battery separators are also described.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: November 2, 2021
    Assignee: Celgard, LLC
    Inventors: Changqing Wang Adams, Kang Karen Xiao, Stefan Reinartz, Masaaki Okada, Brian R. Stepp, Yao Lu, Eric Robert White, Katharine Chemelewski
  • Publication number: 20210257701
    Abstract: A new or improved microporous monolayer, bilayer, trilayer, or multilayer membrane, separator membrane, separator, or coated separator is disclosed. The membrane is preferably made up of at least one resin or polymer and at least one additive. The additive may comprise at least one material that improves adhesion of the microporous membrane to a coating, including a polyaramid-containing coating and a PCS coating, or to a different material such as a metallic surface, including an electrode surface. Improvements in adhesion are based on comparisons to similar microporous membranes without the at least one additive. In some preferred embodiments, the at least one additive may comprise, consist of, or consist essentially of a functionalized polymer or the combination of a functionalized polymer and an elastomer. In some embodiments, the functional group of the functionalized polymer may be maleic anhydride (MAH).
    Type: Application
    Filed: May 10, 2019
    Publication date: August 19, 2021
    Inventors: Kang Karen Xiao, Allen M. Donn, Stefan Reinartz, Changqing Wang Adams, Masaaki Okada, Brian R. Stepp, Eric Robert White, Katharine Chemelewski
  • Publication number: 20210194095
    Abstract: Described herein is a multilayer microporous film or membrane that may exhibit improved properties, including improved dielectric break down and strength, compared to prior monolayer or tri-layer microporous membranes of the same thickness. The preferred multilayer microporous membrane comprises microlayers and one or more lamination interfaces or barriers. Also disclosed is a battery separator or battery comprising one or more of the multilayer microporous films or membranes. The inventive battery and battery separator is preferably safer and more robust than batteries and battery separators using prior monolayer and tri-layer microporous membranes. Also, described herein is a method for making the multilayer microporous separators, membranes or films described herein.
    Type: Application
    Filed: May 10, 2019
    Publication date: June 24, 2021
    Inventors: Karen Kang Xiao, Stefan Reinartz, Takahiko Kondo, Hisaki lkebata, Eric J. Penegar, Robert Nark, Changqing Wang Adams, Masaaki Okada, Brian R. Stepp, Eric Robert White, Allen M. Donn, Katharine Chemeiewski
  • Publication number: 20210143511
    Abstract: New and/or improved coatings, layers or treatments for porous substrates, including battery separators or separator membranes, and/or coated or treated porous substrates, including coated battery separators, and/or batteries or cells including such coatings or coated separators, and/or related methods including methods of manufacture and/or of use thereof are disclosed. Also, new or improved coatings for porous substrates, including battery separators, which comprise at least a matrix material or a polymeric binder, and heat-resistant particles with additional additives, materials or components, and/or to new or improved coated or treated porous substrates, including battery separators, where the coating comprises at least a matrix material or a polymeric binder, and heat-resistant particles with additional additives, materials or components are disclosed.
    Type: Application
    Filed: January 4, 2019
    Publication date: May 13, 2021
    Inventors: Zhengming Zhang, Michael B. Lane, Insik Jeon, Edward Kruger, Xiang E. Yu, Ronnie E. Smith, Stefan Reinartz, Junqing Ma, Daniel R. Alexander
  • Publication number: 20200343510
    Abstract: In accordance with at least certain embodiments, the present invention is directed to novel, improved, coated, or treated separator membranes, separators or membrane based separators for lithium batteries. The membranes or separators may include non-woven layers, improved surfactant treatments, or combinations thereof. The separators or membranes are useful for solvent electrolyte lithium batteries, especially rechargeable lithium ion batteries, and provide improved performance, wettability, cycling ability, and/or recharging efficiency.
    Type: Application
    Filed: July 7, 2020
    Publication date: October 29, 2020
    Inventors: Changqing Wang Adams, C. Glen Wensley, Stefan Reinartz
  • Publication number: 20200335759
    Abstract: New and/or improved coatings for porous substrates, including battery separators or separator membranes, and/or coated porous substrates, including coated battery separators, and/or batteries or cells including such coatings or coated separators, and/or related methods including methods of manufacture and/or of use thereof are disclosed. Also, new or improved coatings for porous substrates, including battery separators, which comprise at least a polymeric binder and heat-resistant particles with or without additional additives, materials or components, and/or to new or improved coated porous substrates, including battery separators, where the coating comprises at least a polymeric binder and heat-resistant particles with or without additional additives, materials or components are disclosed.
    Type: Application
    Filed: July 21, 2017
    Publication date: October 22, 2020
    Applicant: Celgard, LLC
    Inventors: Michael B. LANE, Insik JEON, Edward KRUGER, Xiang YU, Ronnie E. SMITH, Stefan REINARTZ, Junqing MA
  • Publication number: 20200277465
    Abstract: A novel or improved base film for impregnation, impregnated base film, product incorporating the impregnated base film, and/or related methods as shown, claimed or described herein.
    Type: Application
    Filed: September 12, 2018
    Publication date: September 3, 2020
    Inventors: Takahiko Kondo, Masaaki Okada, Stefan Reinartz, Daniel R. Alexander
  • Patent number: 10741814
    Abstract: In accordance with at least certain embodiments, the present invention is directed to novel, improved, coated, or treated separator membranes, separators or membrane based separators for lithium batteries. The membranes or separators may include non-woven layers, improved surfactant treatments, or combinations thereof. The separators or membranes are useful for solvent electrolyte lithium batteries, especially rechargeable lithium ion batteries, and provide improved performance, wettability, cycling ability, and/or recharging efficiency.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: August 11, 2020
    Assignee: Celgard, LLC
    Inventors: Changqing Wang Adams, C. Glen Wensley, Stefan Reinartz
  • Publication number: 20200161618
    Abstract: Described herein, are battery separators, comprising the following: a microporous polymeric film; and an optional coating layer on at least one side of the microporous polymeric film, wherein at least one of the microporous polymeric film and the optional coating comprises an additive. The additive is selected from the group consisting of a lubricating agent, a plasticizing agent, a nucleating agent, a shrinkage reducing agent, a surfactant, an SEI improving agent, a cathode protection agent, a flame retardant additive, LiPF6 salt stabilizer, an overcharge protector, an aluminum corrosion inhibitor, a lithium deposition agent or improver, or a solvation enhancer, an aluminum corrosion inhibitor, a wetting agent, and a viscosity improver. Also, described herein are batteries, including lithium-ion batteries, comprising one or more of the described separators. Methods for making the battery separators are also described.
    Type: Application
    Filed: November 7, 2017
    Publication date: May 21, 2020
    Inventors: Changqing Wang Adams, Kang Karen Xiao, Stefan Reinartz, Masaaki Okada, Brian R. Stepp, Yao Lu, Eric Robert White, Katharine Chemelewski
  • Publication number: 20200028139
    Abstract: Described herein is a multilayer microporous film or membrane that may exhibit improved properties, including improved dielectric break down and strength, compared to prior monolayer or tri-layer microporous membranes of the same thickness. The preferred multilayer microporous membrane comprises microlayers and one or more lamination barriers. Also disclosed is a battery separator or battery comprising one or more of the multilayer microporous films or membranes. The inventive battery and battery separator is preferably safer and more robust than batteries and battery separators using prior monolayer and tri-layer microporous membranes. Also, described herein is a method for making the multilayer microporous separators, membranes or films described herein.
    Type: Application
    Filed: November 10, 2017
    Publication date: January 23, 2020
    Inventors: Kang Karen Xiao, Eric J. Penegar, Takahiko Kondo, Robert Nark, Eric R. White, Xiaomin Zhang, Kristoffer K. Stokes, Stefan Reinartz, Masaaki Okada
  • Publication number: 20190267599
    Abstract: Described herein is a multilayer microporous film or membrane that may exhibit improved properties, including improved dielectric break down and strength, compared to prior monolayer or tri-layer microporous membranes of the same thickness. The preferred multilayer microporous membrane comprises microlayers and one or more lamination barriers. Also disclosed is a battery separator or battery comprising one or more of the multilayer microporous films or membranes. The inventive battery and battery separator is preferably safer and more robust than batteries and battery separators using prior monolayer and tri-layer microporous membranes. Also, described herein is a method for making the multilayer microporous separators, membranes or films described herein.
    Type: Application
    Filed: November 13, 2017
    Publication date: August 29, 2019
    Inventors: Kang Karen Xiao, Eric J. Penegar, Takahiko Kondo, Robert Nark, Eric R. White, Xiaomin Zhang, Kristoffer K. Stokes, Stefan Reinartz, Masaaki Okada
  • Publication number: 20160329541
    Abstract: In accordance with at least certain embodiments, the present invention is directed to novel, improved, coated, or treated separator membranes, separators or membrane based separators for lithium batteries. The membranes or separators may include non-woven layers, improved surfactant treatments, or combinations thereof. The separators or membranes are useful for solvent electrolyte lithium batteries, especially rechargeable lithium ion batteries, and provide improved performance, wettability, cycling ability, and/or recharging efficiency.
    Type: Application
    Filed: May 5, 2016
    Publication date: November 10, 2016
    Inventors: Changqing Wang Adams, C. Glen Wensley, Stefan Reinartz
  • Patent number: 8841484
    Abstract: Disclosed are certain partially fluorinated amide compounds and composite materials containing the compounds. Also disclosed are methods for making the composite materials.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: September 23, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Keith W. Hutchenson, Anilkumar Raghavanpillai, Stefan Reinartz