Patents by Inventor Stefan Saladin

Stefan Saladin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9155571
    Abstract: An interspinous process spacer for implantation in an interspinous space between a superior spinous process and an inferior spinous process includes a balloon-like body, a first deployable protrusion and a second deployable protrusion. The body has a distal end, a proximal end and a longitudinal axis extending between the proximal and distal ends. The spacer is arrangeable in an unexpanded configuration and an expanded configuration. The first deployable protrusion is mounted proximate the proximal end and the second deployable protrusion is mounted proximate the distal end. The first and second deployable protrusions are oriented generally parallel to the longitudinal axis in the unexpanded configuration and generally perpendicular to the longitudinal axis in the expanded configuration.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: October 13, 2015
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Daniel Thommen, Markus Weber, Jacques Teisen, Markus Kraft, Florian Kaufmann, Markus Hunziker, Felix Aschmann, Stefan Saladin, Martin Oswald, Roman Randegger
  • Patent number: 8702757
    Abstract: An interspinous process spacer for implantation in an interspinous space between a superior spinous process and an inferior spinous process includes a balloon-like body, a first deployable protrusion and a second deployable protrusion. The body has a distal end, a proximal end and a longitudinal axis extending between the proximal and distal ends. The spacer is arrangeable in an unexpanded configuration and an expanded configuration. The first deployable protrusion is mounted proximate the proximal end and the second deployable protrusion is mounted proximate the distal end. The first and second deployable protrusions are oriented generally parallel to the longitudinal axis in the unexpanded configuration and generally perpendicular to the longitudinal axis in the expanded configuration.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: April 22, 2014
    Assignee: DePuy Synthes Products, LLC
    Inventors: Daniel Thommen, Markus Weber, Jacques Teisen, Markus Kraft, Florian Kaufmann, Markus Hunziker, Felix Aschmann, Stefan Saladin, Martin Oswald, Roman Randegger
  • Publication number: 20140074252
    Abstract: An implant system includes a fixation device that, in turn can include an expandable implant alone or in combination with an auxiliary implant. The expandable implant includes an expandable implant body that is made from an expandable material. The expandable material includes a polymer matrix and an expandable gas source contained within at least a portion of the polymer matrix. The implant system can further include an energy source configured to heat the polymer matrix to a temperature above its glass transition temperature, thereby causing the gas source to expand inside the polymer matrix. The fixation device can further include an insertion instrument configured to implant the fixation device into an anatomical cavity.
    Type: Application
    Filed: November 14, 2013
    Publication date: March 13, 2014
    Inventors: Adrian Baumgartner, Robert Frigg, Cyril Voisard, Reto Nardini, Dieter Schmidli, Christian Brunner, Stefan Saladin
  • Patent number: 8608743
    Abstract: An implant system includes a fixation device that, in turn can include an expandable implant alone or in combination with an auxiliary implant. The expandable implant includes an expandable implant body that is made from an expandable material. The expandable material includes a polymer matrix and an expandable gas source contained within at least a portion of the polymer matrix. The implant system can further include an energy source configured to heat the polymer matrix to a temperature above its glass transition temperature, thereby causing the gas source to expand inside the polymer matrix. The fixation device can further include an insertion instrument configured to implant the fixation device into an anatomical cavity.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: December 17, 2013
    Assignee: DePuy Synthes Products, LLC
    Inventors: Adrian Baumgartner, Robert Frigg, Cyril Voisard, Reto Nardini, Dieter Schmidli, Christian Brunner, Stefan Saladin
  • Publication number: 20110190817
    Abstract: An interspinous process spacer for implantation in an interspinous space between a superior spinous process and an inferior spinous process includes a balloon-like body, a first deployable protrusion and a second deployable protrusion. The body has a distal end, a proximal end and a longitudinal axis extending between the proximal and distal ends. The spacer is arrangeable in an unexpanded configuration and an expanded configuration. The first deployable protrusion is mounted proximate the proximal end and the second deployable protrusion is mounted proximate the distal end. The first and second deployable protrusions are oriented generally parallel to the longitudinal axis in the unexpanded configuration and generally perpendicular to the longitudinal axis in the expanded configuration.
    Type: Application
    Filed: November 5, 2010
    Publication date: August 4, 2011
    Applicant: SYNTHES USA, LLC
    Inventors: Daniel THOMMEN, Markus WEBER, Jacques TEISEN, Markus KRAFT, Florian KAUFMANN, Markus HUNZIKER, Felix ASCHMANN, Stefan SALADIN, Martin OSWALD, Roman RANDEGGER
  • Publication number: 20110172710
    Abstract: An interspinous process spacer for implantation in an interspinous space between a superior spinous process and an inferior spinous process includes a balloon-like body, a first deployable protrusion and a second deployable protrusion. The body has a distal end, a proximal end and a longitudinal axis extending between the proximal and distal ends. The spacer is arrangeable in an unexpanded configuration and an expanded configuration. The first deployable protrusion is mounted proximate the proximal end and the second deployable protrusion is mounted proximate the distal end. The first and second deployable protrusions are oriented generally parallel to the longitudinal axis in the unexpanded configuration and generally perpendicular to the longitudinal axis in the expanded configuration.
    Type: Application
    Filed: November 5, 2010
    Publication date: July 14, 2011
    Applicant: SYNTHES USA, LLC
    Inventors: Daniel THOMMEN, Markus WEBER, Jacques TEISEN, Markus KRAFT, Florian KAUFMANN, Markus HUNZIKER, Felix ASCHMANN, Stefan SALADIN, Martin OSWALD, Roman RANDEGGER
  • Publication number: 20110160870
    Abstract: An implant system includes a fixation device that, in turn can include an expandable implant alone or in combination with an auxiliary implant. The expandable implant includes an expandable implant body that is made from an expandable material. The expandable material includes a polymer matrix and an expandable gas source contained within at least a portion of the polymer matrix. The implant system can further include an energy source configured to heat the polymer matrix to a temperature above its glass transition temperature, thereby causing the gas source to expand inside the polymer matrix. The fixation device can further include an insertion instrument configured to implant the fixation device into an anatomical cavity.
    Type: Application
    Filed: November 30, 2010
    Publication date: June 30, 2011
    Inventors: Adrian Baumgartner, Robert Frigg, Cyril Voisard, Reto Nardini, Dieter Schmidli, Christian Brunner, Stefan Saladin
  • Publication number: 20110160779
    Abstract: The present invention is directed an anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The anchor assembly preferably includes a bone anchor (10), a body (20) with a rod-receiving channel, an insert member (40) (preferably a bushing), and a locking cap with a saddle (70). The anchor assembly preferably enables in-situ assembly where the bone anchor may be secured to the patient's vertebra prior to being received within the body of the bone anchor assembly. Accordingly, the anchor assembly enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body may be snapped onto the bone anchor and a spinal rod may be inserted into the rod-receiving channel.
    Type: Application
    Filed: September 4, 2009
    Publication date: June 30, 2011
    Applicant: Synthes USA, LLC
    Inventors: Fridolin J. Schlaepfer, Christian Ammann, Stefan Saladin
  • Publication number: 20110144692
    Abstract: An interspinous spacer assembly (100) for insertion and/or implantation between spinous processes of adjacent superior and inferior vertebrae includes an interspinous spacer member (110) sized and configured for insertion into the interspinous space located between adjacent spinous processes and an engagement mechanism (105) for operatively coupling the spacer member to the adjacent spinous processes and for preventing migration of the assembly once implanted. The interspinous spacer assembly is adjustable to conform to the individual anatomy of a patient's spine.
    Type: Application
    Filed: August 13, 2009
    Publication date: June 16, 2011
    Applicant: SYNTHES USA, LLC
    Inventors: Stefan Saladin, Felix Aschmann, Manuel Schaer, Justin Coppes, Nicholas Angert, Grant Skidmore, Michael Mayer