Patents by Inventor Stefan Schneiderbanger

Stefan Schneiderbanger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10875258
    Abstract: The invention relates to a method and device for generatively producing components, said device comprising a radiation device for selectively radiating a powder bed, and an induction device for inductively heating the component produced by radiating the powder bed, Said induction device comprising at least one voltage source which can simultaneously produce alternating voltages with at least two different frequencies.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: December 29, 2020
    Assignee: MTU AERO ENGINES AG
    Inventors: Joachim Bamberg, Erwin Bayer, Andreas Jakimov, Herbert Hanrieder, Bertram Kopperger, Wilhelm Satzger, Thomas Hess, Karl-Heinz Dusel, Stefan Schneiderbanger
  • Patent number: 10538463
    Abstract: The present invention relates to a component of a turbomachine made of a composite material comprising a ceramic matrix and a corrosion protection layer arranged on the composite material. The corrosion protection layer comprises: 50-80 wt % silicon, 12-30 wt % nitrogen, 2-8 wt % oxygen, 2-8 wt % aluminum, and 0-3 wt % of at least one alkaline earth metal. The invention furthermore relates to a method for producing a corresponding component of a turbomachine.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: January 21, 2020
    Assignee: MTU AERO ENGINES AG
    Inventors: Stefan Schneiderbanger, Nicole Jakimov, Heinrich Walter
  • Patent number: 10145003
    Abstract: Disclosed are a method for forming a thermal barrier layer for a metallic component, which method involves forming a ceramic coat in which at least in part aluminum oxide and titanium oxide are disposed, the aluminum oxide and the titanium oxide being introduced by infiltration of aluminum-containing and titanium-containing particles or substances or by physical vapor deposition.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: December 4, 2018
    Assignee: MTU AERO ENGINES AG
    Inventors: Philipp Doebber, Joachim Bamberg, Stefan Schneiderbanger, Thomas Bautsch
  • Patent number: 9694568
    Abstract: A method for coating a component of a turbomachine is disclosed. The method includes covering a first surface of the component with a covering device, where the covering device is profiled in a zigzag shape. The method further includes applying a coating material via cold kinetic compaction or kinetic cold gas spraying on the component such that a second surface of the component is coated with the coating material and such that particles of the coating material are deflected off of the covering device so that the particles do not adhere to the covering device.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: July 4, 2017
    Assignee: MTU Aero Engines AG
    Inventors: Andreas Jakimov, Stefan Schneiderbanger, Manuel Hertter
  • Publication number: 20160297717
    Abstract: The present invention relates to a component of a turbomachine made of a composite material comprising a ceramic matrix and a corrosion protection layer arranged on the composite material. The corrosion protection layer comprises: 50-80 wt % silicon, 12-30 wt % nitrogen, 2-8 wt % oxygen, 2-8 wt % aluminum, and 0-3 wt % of at least one alkaline earth metal. The invention furthermore relates to a method for producing a corresponding component of a turbomachine.
    Type: Application
    Filed: April 1, 2016
    Publication date: October 13, 2016
    Inventors: Stefan SCHNEIDERBANGER, Nicole JAKIMOV, Heinrich WALTER
  • Patent number: 9260784
    Abstract: The present invention relates to a method for producing a component, in particular a blade for a gas turbine, wherein a main body (2) is provided, to which a running-in layer (6) is applied, which can be worn away at least partially during operation to form an accurately fitting surface (11), wherein the running-in layer is applied by kinetic cold-gas compacting, and a component, in particular a blade for a gas turbine, comprising a main body, to which a running-in layer is applied, which can be worn away at least partially during operation to form an accurately fitting surface, wherein the running-in layer is a porous layer made of a Ti alloy.
    Type: Grant
    Filed: July 31, 2010
    Date of Patent: February 16, 2016
    Assignee: MTU Aero Engines GmbH
    Inventors: Andreas Jakimov, Stefan Schneiderbanger, Manuel Hertter
  • Publication number: 20160010488
    Abstract: The present invention relates to a wear protection arrangement for a turbomachine, comprising at least one adjustable guide vane, a casing in which the guide vane is arranged in an adjustable manner, an inner ring, made from a metallic material, in or on which the guide vane is arranged in an adjustable manner, a first gap between an inner guide vane tab and the inner ring and a second gap between an outer guide vane tab and the casing, at least one wear protection coating, wherein the wear protection coating(s) is/are connected to the inner ring and/or to the inner guide vane tab and the wear protection coating(s) forms or form the first gap, at least in certain regions, and/or the wear protection coating(s) is/are connected to the casing and/or to the outer guide vane tab and the wear protection coating(s) forms/form the second gap, at least in certain regions.
    Type: Application
    Filed: July 7, 2015
    Publication date: January 14, 2016
    Inventors: Lothar ALBERS, Stephan BOCK, Stefan SCHNEIDERBANGER
  • Patent number: 9040116
    Abstract: A method for spraying a coating and a cold gas spray nozzle is disclosed. The method includes spraying a coating by the cold gas spray nozzle. A rinsing gas is fed to the cold gas spray nozzle during an interruption of the spraying or at an end of the spraying. Deposits in the cold gas spray nozzle are cooled and detached by the rinsing gas.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: May 26, 2015
    Assignee: MTU Aero Engines GmbH
    Inventors: Andreas Jakimov, Stefan Schneiderbanger, Manuel Hertter
  • Patent number: 9021696
    Abstract: The invention relates to a method for producing a plating (5) of a vane tip. Said method consists of the following steps: a) a vane having a vane tip which is arranged opposite the base of the vane (2) and which comprises a surface which points radially outwards is provided, and b) a porous layer (7) is applied to at least the surface (4) of the vane tip and/or c) a bulge (8) which increases the surface of the vane tip is applied to at least one part of the flanks of the vane tip, said flanks surrounding the surface of the vane tip, and d) the plating (5) is applied to the porous layer and/or the bulge. The invention also relates to corresponding vanes or gas turbines with corresponding vanes.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: May 5, 2015
    Assignee: MTU Aero Engines AG
    Inventors: Andreas Jakimov, Stefan Schneiderbanger, Manuel Hertter
  • Publication number: 20150014179
    Abstract: Disclosed are a method for forming a thermal barrier layer for a metallic component, which method involves forming a ceramic coat in which at least in part aluminum oxide and titanium oxide are disposed, the aluminum oxide and the titanium oxide being introduced by infiltration of aluminum-containing and titanium-containing particles or substances or by physical vapor deposition.
    Type: Application
    Filed: July 10, 2014
    Publication date: January 15, 2015
    Inventors: Philipp DOEBBER, Joachim BAMBERG, Stefan SCHNEIDERBANGER, Thomas BAUTSCH
  • Publication number: 20140360664
    Abstract: A method for coating a component of a turbomachine is disclosed. The method includes covering a first surface of the component with a covering device, where the covering device is profiled in a zigzag shape. The method further includes applying a coating material via cold kinetic compaction or kinetic cold gas spraying on the component such that a second surface of the component is coated with the coating material and such that particles of the coating material are deflected off of the covering device so that the particles do not adhere to the covering device.
    Type: Application
    Filed: June 18, 2014
    Publication date: December 11, 2014
    Applicant: MTU Aero Engines AG
    Inventors: Andreas JAKIMOV, Stefan SCHNEIDERBANGER, Manuel HERTTER
  • Patent number: 8852681
    Abstract: A mask and method for kinetic cold gas compacting is disclosed. The mask includes a body for covering a not-to-be-coated region of a substrate to be coated having a work side exposed to a coating substance. The work side has a hardness such that the work side is not plastic deformable by a striking coating particle.
    Type: Grant
    Filed: November 7, 2009
    Date of Patent: October 7, 2014
    Assignee: MTU Aero Engines GmbH
    Inventors: Andreas Jakimov, Manuel Hertter, Stefan Schneiderbanger
  • Publication number: 20140239553
    Abstract: The invention relates to a method and device for generatively producing components, said device comprising a radiation device for selectively radiating a powder bed, and an induction device for inductively heating the component produced by radiating the powder bed, Said induction device comprising at least one voltage source which can simultaneously produce alternating voltages with at least two different frequencies.
    Type: Application
    Filed: September 12, 2012
    Publication date: August 28, 2014
    Applicant: MTU AERO ENGINES AG
    Inventors: Joachim Bamberg, Erwin Bayer, Abdreas Jakimov, Herbert Hanrieder, Bertram Kopperger, Wilhelm Satzger, Thomas Hess, Karl-Heinz Dusel, Stefan Schneiderbanger
  • Patent number: 8697184
    Abstract: The present invention relates to a method for producing a coating on a gas turbine component, in which particles at least of parts of a material to be applied as coating are accelerated by means of kinetic gas dynamic cold spraying in a spray jet onto the surface (2) of the component (1) to be coated, wherein a reactive gas is fed into the spray jet (6), so that the reactive gas reacts at least partially with the particles of the coating material when the particles impinge on the surface (2) to be coated and/or wherein the deposited layer (9) is heated locally and/or over a large area and impacted with a reactive gas, as well as a gas turbine component produced in this way.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: April 15, 2014
    Assignee: MTU Aero Engines GmbH
    Inventors: Manuel Hertter, Andreas Jakimov, Stefan Schneiderbanger
  • Publication number: 20130034661
    Abstract: A method for processing a surface of a component, in particular in the aviation sector, including the following steps: spraying the component with a first powder and coating the component with a second powder, the first powder having the same chemical composition as the second powder.
    Type: Application
    Filed: April 6, 2011
    Publication date: February 7, 2013
    Applicant: MTU Aero Engines GmbH
    Inventors: Stefan Schneiderbanger, Manuel Hertter, Andreas Jakimov, Jochen Tewes
  • Publication number: 20120225213
    Abstract: A method for spraying a coating and a cold gas spray nozzle is disclosed. The method includes spraying a coating by the cold gas spray nozzle. A rinsing gas is fed to the cold gas spray nozzle during an interruption of the spraying or at an end of the spraying. Deposits in the cold gas spray nozzle are cooled and detached by the rinsing gas.
    Type: Application
    Filed: November 11, 2010
    Publication date: September 6, 2012
    Applicant: MTU Aero Engines GmbH
    Inventors: Andreas Jakimov, Stefan Schneiderbanger, Manuel Hertter
  • Publication number: 20120121431
    Abstract: The present invention relates to a method for producing a component, in particular a blade for a gas turbine, wherein a main body (2) is provided, to which a running-in layer (6) is applied, which can be worn away at least partially during operation to form an accurately fitting surface (11), wherein the running-in layer is applied by kinetic cold-gas compacting, and a component, in particular a blade for a gas turbine, comprising a main body, to which a running-in layer is applied, which can be worn away at least partially during operation to form an accurately fitting surface, wherein the running-in layer is a porous layer made of a Ti alloy.
    Type: Application
    Filed: July 31, 2010
    Publication date: May 17, 2012
    Applicant: MTU AERO ENGINES GMBH
    Inventors: Andreas Jakimov, Stefan Schneiderbanger, Manuel Hertter
  • Patent number: 8176777
    Abstract: The present invention concerns a device for measuring of layer thicknesses, especially for measuring of layer thicknesses of a structural part (18) during or after a coating process, with at least a first and a second path length measuring device (12, 14), wherein a first path length (a) to a surface (20) of a layer (22) being applied to the structural part (18) is measured by means of the first path length measuring device (12) and a second path length (b) to an uncoated surface (24) of the structural part (18) is measured by means of the second path length measuring device (14) continuously or at predetermined moments of time.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: May 15, 2012
    Assignee: MTU Aero Engines GmbH
    Inventors: Andreas Jakimov, Manuel Hertter, Stefan Schneiderbanger
  • Patent number: 8153274
    Abstract: A thermal barrier layer for metallic components, in particular for gas turbine components which are subject to high temperatures or hot gas, is disclosed. The thermal barrier layer includes an inner contact layer and an outer top layer, where the inner contact layer is applied to a surface of the component via an adhesion-promoting layer that is disposed therebetween, and between the outer top layer and the inner contact layer an intermediate layer is formed.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: April 10, 2012
    Assignee: MTU Aero Engines GmbH
    Inventors: Stefan Schneiderbanger, Ralf Stolle, Thomas Uihlein, Wolfgang Wachter
  • Publication number: 20120034092
    Abstract: The invention relates to a method for producing a plating (5) of a vane tip. Said method consists of the following steps: a) a vane having a vane tip which is arranged opposite the base of the vane (2) and which comprises a surface which points radially outwards is provided, and b) a porous layer (7) is applied to at least the surface (4) of the vane tip and/or c) a bulge (8) which increases the surface of the vane tip is applied to at least one part of the flanks of the vane tip, said flanks surrounding the surface of the vane tip, and d) the plating (5) is applied to the porous layer and/or the bulge. The invention also relates to corresponding vanes or gas turbines with corresponding vanes.
    Type: Application
    Filed: April 21, 2010
    Publication date: February 9, 2012
    Applicant: MTU AERO ENGINES GMBH
    Inventors: Andreas Jakimov, Stefan Schneiderbanger, Manuel Hertter