Patents by Inventor Stefan Solyom

Stefan Solyom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11945530
    Abstract: A method of implementing an autonomous electric-powered trailer during a towing operation includes sourcing, via the one or more computers, one or more streams of sensing data from one or more sensing sources during a towing event involving an autonomous electric-powered (AEP) trailer and a towing entity, generating, via a towing-assist control algorithm, a plurality of towing-assistance instructions based on an input of the one or more streams of sensing data; operating, via one or more electric motors, each wheel of the AEP trailer at a target propulsion based on the plurality of towing-assistance instructions, wherein the operating of the each wheel enables the AEP trailer to autonomously assist the towing entity during the towing event.
    Type: Grant
    Filed: May 12, 2023
    Date of Patent: April 2, 2024
    Assignee: Pebble Mobility, Inc.
    Inventors: Bingrui Yang, Stefan Solyom
  • Publication number: 20230365209
    Abstract: A method of implementing an autonomous electric-powered trailer during a towing operation includes sourcing, via the one or more computers, one or more streams of sensing data from one or more sensing sources during a towing event involving an autonomous electric-powered (AEP) trailer and a towing entity, generating, via a towing-assist control algorithm, a plurality of towing-assistance instructions based on an input of the one or more streams of sensing data; operating, via one or more electric motors, each wheel of the AEP trailer at a target propulsion based on the plurality of towing-assistance instructions, wherein the operating of the each wheel enables the AEP trailer to autonomously assist the towing entity during the towing event.
    Type: Application
    Filed: May 12, 2023
    Publication date: November 16, 2023
    Applicant: Pebble Mobility, Inc.
    Inventors: Bingrui Yang, Stefan Solyom
  • Publication number: 20230331050
    Abstract: A method for autonomously tethering an autonomous electric powered trailer to a tethering partner includes identifying a target tethering partner for the autonomous electric powered (AEP) trailer, detecting a likely n-dimensional position of a tethering nexus of the target tethering partner based on an assessment of sensor data; computing, a set of automated tethering instructions based on the likely n-dimensional position of the tethering nexus; and autonomously tethering, via the one or more computers, a coupler of the AEP trailer to the tethering nexus based on executing the set of automated tethering instructions.
    Type: Application
    Filed: March 30, 2023
    Publication date: October 19, 2023
    Applicant: Pebble Mobility, Inc.
    Inventors: Bingrui Yang, Stefan Solyom
  • Patent number: 10919520
    Abstract: A control system for a vehicle includes a plurality of vehicle actuators that are operable to affect actual chassis-level accelerations, a vehicle intelligence unit that determines a motion plan, a vehicle motion control unit that determines a chassis-level motion request based on the motion plan, and a chassis control unit that determines actuator commands for the plurality of vehicle actuators based on the chassis-level motion request and actuator identity information that describes presently available actuators from the plurality of vehicle actuators.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: February 16, 2021
    Assignee: Apple Inc.
    Inventors: Christopher D. Gadda, Carlos Alberto De Magalhaes Massera Filho, David A. Stronks, Gabriel M. Hoffmann, Miroslav Baric, Nathaniel B. Honka, Stefan Solyom, Timothee J. Cazenave
  • Patent number: 10407035
    Abstract: A control system for a vehicle includes a plurality of vehicle actuators that are operable to affect actual chassis-level accelerations, a vehicle intelligence unit that determines a motion plan, a vehicle motion control unit that determines a chassis-level motion request based on the motion plan, and a chassis control unit that determines actuator commands for the plurality of vehicle actuators based on the chassis-level motion request.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: September 10, 2019
    Assignee: Apple Inc.
    Inventors: Christopher D. Gadda, Carlos Alberto De Magalhaes Massera Filho, David A. Stronks, Gabriel M. Hoffmann, Miroslav Baric, Nathaniel B. Honka, Stefan Solyom, Timothee J. Cazenave
  • Patent number: 10384672
    Abstract: A control system for a vehicle includes an internal vehicle reference model that determines reference states for the vehicle that represent an expected vehicle response, sensors that determine measured states for the vehicle, and a vehicle motion control system that determines desired states for the vehicle. A stability determining module identifies a reference deviation between the reference states and the measured states, identifies a desired deviation between the desired states and measured states, and outputs a command for reducing the reference deviation and the desired deviation. Actuators are operable to reduce the reference deviation and the desired deviation in response to the command.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: August 20, 2019
    Assignee: Apple Inc.
    Inventors: Diomidis Katzourakis, Huibert Mees, Christopher D. Gadda, Stefan Solyom, Johannes A. Huennekens
  • Patent number: 10086844
    Abstract: A vehicle sensor diagnosis system and method, and a vehicle including such a system are provided. The vehicle sensor diagnosis system is configured to predict upcoming vehicle surrounding conditions along at least a section of a host vehicle route based on database information on the host vehicle surroundings along the section and information on a current host vehicle surrounding, estimate an expected level of sensor performance for the route section based on the prediction, assess the level of sensor performance detected during host vehicle travel along the host vehicle route section, assess if a difference between the estimated level of sensor performance and the detected level of sensor performance for the host vehicle route section exceeds a first threshold difference and, if so, initiate a diagnose result communication.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: October 2, 2018
    Assignee: Volvo Car Corporation
    Inventors: Erik Coelingh, Stefan Solyom, Mattias Erik Brannstrom
  • Patent number: 10054940
    Abstract: A method is provided for assisting a driver of a vehicle. The method may include performing a lateral control of the vehicle in an autonomous mode, determining information about a surroundings of the vehicle, checking whether a longitudinal control of the vehicle performed by the driver is appropriate considering the determined information about the surroundings, and, if appropriate, continuing an autonomous mode of the lateral control of the vehicle. A driver assist system is also provided for performing the method.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: August 21, 2018
    Assignee: Volvo Car Corporation
    Inventors: Stefan Solyom, Marcus Nils Gunnar Rothoff
  • Patent number: 9802624
    Abstract: The present disclosure relates to a vehicle adapted for autonomous driving, such as an autonomous vehicle, comprising an assisting object detecting system for detecting obstructing objects to the vehicle. The object detecting system is adapted to detect an object by comparing a reference value of a selected parameter with a measured value of the selected parameter. The present disclosure also relates to a method and a computer program product for use in the vehicle.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: October 31, 2017
    Assignee: Volvo Car Corporation
    Inventors: Mikael Thor, Stefan Solyom, Mattias Erik Brannstrom
  • Patent number: 9776509
    Abstract: A method and an apparatus are described for adaptive cruise control in a road vehicle, as well as a road vehicle including such an apparatus. One of four control regions is determined and a set of control parameters chosen in dependence of the detected control region. An acceleration command is provided, based on the chosen set of control parameters, using a sliding surface and a control law that ensures convergence to the sliding surface.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: October 3, 2017
    Assignee: Volvo Car Corporation
    Inventors: Stefan Solyom, Oskar Nordin
  • Patent number: 9731729
    Abstract: A vehicle, vehicle system and method for increasing at least one of safety and comfort during autonomous driving is provided. The vehicle system includes an autonomous drive arrangement with multiple sensors, a vehicle control arrangement and a positioning system. The vehicle system is configured to determine an estimated probability that at least one sensor will become unavailable, or an estimated time/distance ahead until at least one sensor is determined to become unavailable. The vehicle system is further configured to activate at least one countermeasure based on at least one of the estimated probability, the estimated time and the estimated distance.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: August 15, 2017
    Assignee: Volvo Car Corporation
    Inventors: Stefan Solyom, Erik Coelingh, Mattias Erik Brannstrom
  • Patent number: 9594373
    Abstract: Provided are a method and apparatus for continuously establishing a boundary for autonomous driving availability, in a vehicle having autonomous driving capabilities and comprising at least one remote sensor for acquiring vehicle surrounding information and at least one vehicle dynamics sensor for determining vehicle dynamics parameters. The method and apparatus include at least one of a positioning arrangement that provides map data with associated information, a route planning arrangement that enables route planning, a vehicle driver monitoring arrangement that provides driver monitoring information, and a real time information acquiring arrangement that acquires at least one of traffic information and weather information. The boundary is calculated based on a planned route and at least one of vehicle surrounding information, vehicle dynamics parameters, driver monitoring information, map data, traffic information and weather information, for the planned route.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: March 14, 2017
    Assignee: Volvo Car Corporation
    Inventors: Stefan Solyom, Ake Blom, Marcus Nils Gunnar Rothoff
  • Publication number: 20160334805
    Abstract: A method is disclosed for controlling movement of a group of vehicles that includes a lead vehicle and one or more additional vehicles. The lead vehicle includes a first control unit and a first wireless communication device. Each additional vehicle includes a second control unit adapted to in an at least partly automated mode have the movement of the additional vehicle controlled by the first control unit of the lead vehicle. Each additional vehicle also includes a second wireless communication device for communication with the first communication device of the lead vehicle. The vehicles of the group are moveable relative to each other within the group as regards longitudinal position, lateral position, speed and/or acceleration. The group of vehicles are controllable by the first control unit of the lead vehicle so as to move as a body having a variable shape, thereby cooperating with each other.
    Type: Application
    Filed: July 11, 2016
    Publication date: November 17, 2016
    Inventors: Marcus Nils Gunnar ROTHOFF, Stefan SOLYOM, Mattias Erik BRANNSTROM, Jonas EKMARK, Erik COELINGH
  • Patent number: 9469307
    Abstract: A vehicle, vehicle system and method for increasing at least one of safety and comfort during autonomous driving is provided. The vehicle system includes an autonomous drive arrangement with multiple sensors, and a vehicle control arrangement. The vehicle system is configured to determine an estimated probability that at least one sensor will become unavailable, or an estimated time/distance ahead until at least one sensor is determined to become unavailable. The vehicle system is further configured to activate at least one countermeasure based on at least one of the estimated probability, the estimated time and the estimated distance.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: October 18, 2016
    Assignee: Volvo Car Corporation
    Inventors: Stefan Solyom, Erik Coelingh, Mattias Erik Brannstrom
  • Publication number: 20160214480
    Abstract: A method and an apparatus are described for adaptive cruise control in a road vehicle, as well as a road vehicle including such an apparatus. One of four control regions is determined and a set of control parameters chosen in dependence of the detected control region. An acceleration command is provided, based on the chosen set of control parameters, using a sliding surface and a control law that ensures convergence to the sliding surface.
    Type: Application
    Filed: January 19, 2016
    Publication date: July 28, 2016
    Inventors: Stefan SOLYOM, Oskar NORDIN
  • Patent number: 9358963
    Abstract: A safety arrangement and method are described for controlling automatic travel of a fully automated vehicle. One or more forward-looking detection systems are provided for detecting objects in a future path of the vehicle. A control unit is configured to determine a detection confidence for the detected objects. The control unit is further operable to, upon low confidence for existence of a detected object, control a brake system of the vehicle to apply a predetermined limited amount of braking until high confidence is obtained for existence or non-existence of the previously detected object. Thereafter the control unit is further operable to apply full braking if high confidence is obtained for existence of the previously detected object and to discontinue braking if high confidence is obtained for non-existence of the previously detected object.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: June 7, 2016
    Assignee: Volvo Car Corporation
    Inventors: Stefan Solyom, Jonas Ekmark
  • Publication number: 20150266490
    Abstract: A vehicle sensor diagnosis system and method, and a vehicle including such a system are provided. The vehicle sensor diagnosis system is configured to predict upcoming vehicle surrounding conditions along at least a section of a host vehicle route based on database information on the host vehicle surroundings along the section and information on a current host vehicle surrounding, estimate an expected level of sensor performance for the route section based on the prediction, assess the level of sensor performance detected during host vehicle travel along the host vehicle route section, assess if a difference between the estimated level of sensor performance and the detected level of sensor performance for the host vehicle route section exceeds a first threshold difference and, if so, initiate a diagnose result communication.
    Type: Application
    Filed: March 11, 2015
    Publication date: September 24, 2015
    Inventors: Erik COELINGH, Stefan SOLYOM, Mattias Erik BRANNSTROM
  • Publication number: 20150266489
    Abstract: A vehicle, vehicle system and method for increasing at least one of safety and comfort during autonomous driving is provided. The vehicle system includes an autonomous drive arrangement with multiple sensors, and a vehicle control arrangement. The vehicle system is configured to determine an estimated probability that at least one sensor will become unavailable, or an estimated time/distance ahead until at least one sensor is determined to become unavailable. The vehicle system is further configured to activate at least one countermeasure based on at least one of the estimated probability, the estimated time and the estimated distance.
    Type: Application
    Filed: March 11, 2015
    Publication date: September 24, 2015
    Inventors: Stefan SOLYOM, Erik COELINGH, Mattias Erik BRANNSTROM
  • Publication number: 20150266488
    Abstract: A vehicle, vehicle system and method for increasing at least one of safety and comfort during autonomous driving is provided. The vehicle system includes an autonomous drive arrangement with multiple sensors, a vehicle control arrangement and a positioning system. The vehicle system is configured to determine an estimated probability that at least one sensor will become unavailable, or an estimated time/distance ahead until at least one sensor is determined to become unavailable. The vehicle system is further configured to activate at least one countermeasure based on at least one of the estimated probability, the estimated time and the estimated distance.
    Type: Application
    Filed: March 11, 2015
    Publication date: September 24, 2015
    Inventors: Stefan SOLYOM, Erik COELINGH, Mattias Erik BRANNSTROM
  • Publication number: 20150253772
    Abstract: Provided are a method and apparatus for continuously establishing a boundary for autonomous driving availability, in a vehicle having autonomous driving capabilities and comprising at least one remote sensor for acquiring vehicle surrounding information and at least one vehicle dynamics sensor for determining vehicle dynamics parameters. The method and apparatus include at least one of a positioning arrangement that provides map data with associated information, a route planning arrangement that enables route planning, a vehicle driver monitoring arrangement that provides driver monitoring information, and a real time information acquiring arrangement that acquires at least one of traffic information and weather information. The boundary is calculated based on a planned route and at least one of vehicle surrounding information, vehicle dynamics parameters, driver monitoring information, map data, traffic information and weather information, for the planned route.
    Type: Application
    Filed: February 24, 2015
    Publication date: September 10, 2015
    Inventors: Stefan SOLYOM, Ake BLOM, Marcus Nils Gunnar ROTHOFF