Patents by Inventor Stefan Weisser

Stefan Weisser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9660732
    Abstract: It is disclosed an optical coherent receiver for an optical communication network. The optical coherent receiver is configured to receive a modulated optical signal and to process it for generating an in-phase component and a quadrature component. The optical coherent receiver comprises a power adjuster in turn comprising a multiplying unit and a retroactively connected digital circuit. The multiplying unit is configured to multiply the in-phase and quadrature components by in-phase and quadrature gains, respectively, thereby providing power-adjusted in-phase and quadrature components. The digital circuit is configured to compute: a common gain indicative of a sum of the powers of the power-adjusted in-phase and quadrature components; a differential gain indicative of a difference between the powers of the power-adjusted in-phase and quadrature components; and the in-phase and quadrature gains as a product and a ratio, respectively, between the common gain and the differential gain.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: May 23, 2017
    Assignee: Alcatel Lucent
    Inventors: Stefan Weisser, Silvio Cucchi, Carlo Costantini, Noriaki Kaneda, Andreas Leven
  • Patent number: 9374188
    Abstract: A WDM system having at least two channels, each of which employs two polarizations, is arranged so that the start times of symbols carried by one polarization of a channel are displaced in time from the start times of symbols carried by the other polarization of that channel, e.g., the start time for each symbol on one polarization is not substantially synchronized with the closest-in-time symbol start time on the other polarization of that channel. Preferably, the data signals are modulated using a return-to-zero (RZ) format and the start times of the symbols of the data signal carried by one polarization of a channel is offset from the start time of the symbols data signal carried by the other polarization of that channel by between 20% to 80%—preferably 50%—of the symbol period of the data signals, when the data signals have the same symbol period.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: June 21, 2016
    Assignee: Alcatel Lucent
    Inventors: René-Jean Essiambre, Stefan Weisser, Peter J. Winzer, Chongjin Xie
  • Patent number: 9020364
    Abstract: In one embodiment, an optical receiver has a bulk dispersion compensator and a butterfly equalizer serially connected to one another to perform dispersion-compensation processing and electronic polarization de-multiplexing. The bulk dispersion compensator has a relatively large dispersion-compensation capacity, but is relatively slow and operates in a quasi-static configuration. The butterfly equalizer has a relatively small dispersion-compensation capacity, but can be dynamically reconfigured on a relatively fast time scale to track the changing conditions in the optical-transport link. The optical receiver has a feedback path that enables the configuration of the bulk dispersion compensator to be changed based on the configuration of the butterfly equalizer in a manner that advantageously enables the receiver to tolerate larger amounts of chromatic dispersion and/or polarization-mode dispersion than without the use of the feedback path.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: April 28, 2015
    Assignee: Alcatel Lucent
    Inventors: Chongjin Xie, Peter J. Winzer, Stefan Weisser, Andreas Leven
  • Publication number: 20140086594
    Abstract: In one embodiment, an optical receiver has a bulk dispersion compensator and a butterfly equalizer serially connected to one another to perform dispersion-compensation processing and electronic polarization de-multiplexing. The bulk dispersion compensator has a relatively large dispersion-compensation capacity, but is relatively slow and operates in a quasi-static configuration. The butterfly equalizer has a relatively small dispersion-compensation capacity, but can be dynamically reconfigured on a relatively fast time scale to track the changing conditions in the optical-transport link. The optical receiver has a feedback path that enables the configuration of the bulk dispersion compensator to be changed based on the configuration of the butterfly equalizer in a manner that advantageously enables the receiver to tolerate larger amounts of chromatic dispersion and/or polarization-mode dispersion than without the use of the feedback path.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Inventors: Chongjin Xie, Peter J. Winzer, Stefan Weisser, Andreas Leven
  • Patent number: 8655191
    Abstract: A method, apparatus and system for providing clock and data recovery in a receiver for receiving a high speed coherent polarization division multiplexed optical signal using a digital signal processing block including a spectral domain spatial combiner are provided.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: February 18, 2014
    Assignee: Alcatel Lucent
    Inventors: Noriaki Kaneda, Andreas B. Leven, Stefan Weisser
  • Publication number: 20130101300
    Abstract: It is disclosed an optical coherent receiver for an optical communication network. The optical coherent receiver is configured to receive a modulated optical signal and to process it for generating an in-phase component and a quadrature component. The optical coherent receiver comprises a power adjuster in turn comprising a multiplying unit and a retroactively connected digital circuit. The multiplying unit is configured to multiply the in-phase and quadrature components by in-phase and quadrature gains, respectively, thereby providing power-adjusted in-phase and quadrature components. The digital circuit is configured to compute: a common gain indicative of a sum of the powers of the power-adjusted in-phase and quadrature components; a differential gain indicative of a difference between the powers of the power-adjusted in-phase and quadrature components; and the in-phase and quadrature gains as a product and a ratio, respectively, between the common gain and the differential gain.
    Type: Application
    Filed: March 24, 2011
    Publication date: April 25, 2013
    Inventors: Stefan Weisser, Silvio Cucchi, Carlo Costantini, Noriaki Kaneda, Andreas Leven
  • Publication number: 20100329677
    Abstract: A method, apparatus and system for providing clock and data recovery in a receiver for receiving a high speed coherent polarization division multiplexed optical signal using a digital signal processing block including a spectral domain spatial combiner are provided.
    Type: Application
    Filed: June 29, 2009
    Publication date: December 30, 2010
    Inventors: Noriaki Kaneda, Andreas B. Leven, Stefan Weisser
  • Publication number: 20100150559
    Abstract: A WDM system having at least two channels, each of which employs two polarizations, is arranged so that the start times of symbols carried by one polarization of a channel are displaced in time from the start times of symbols carried by the other polarization of that channel, e.g., the start time for each symbol on one polarization is not substantially synchronized with the closest-in-time symbol start time on the other polarization of that channel. Preferably, the data signals are modulated using a return-to-zero (RZ) format and the start times of the symbols of the data signal carried by one polarization of a channel is offset from the start time of the symbols data signal carried by the other polarization of that channel by between 20% to 80%—preferably 50%—of the symbol period of the data signals, when the data signals have the same symbol period.
    Type: Application
    Filed: December 12, 2008
    Publication date: June 17, 2010
    Inventors: Rene-Jean Essiambre, Stefan Weisser, Peter J. Winzer, Chongjin Xie
  • Patent number: 7324760
    Abstract: An optical RZ transmitter comprises an optical signal source and a pair of electro-optical modulators in tandem, one arranged to receive a NRZ electrical data signal and the other a clock signal at the data rate of the data signal. The phase difference between the data signal and the clock signal is controlled by adding a first dither signal to a bias signal applied to the modulator receiving the data signal, and a second dither signal, having a different frequency, to the phase difference. The amplitude of variations in the power of the optical output signal corresponding to cross-modulation of the first and second dither signals is detected and the phase difference is controlled in response to the detected amplitude.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: January 29, 2008
    Assignee: Lucent Technologies Inc.
    Inventors: Siegfried Gronbach, Stefan Weisser
  • Publication number: 20050191060
    Abstract: An optical RZ transmitter comprises an optical signal source and a pair of electro-optical modulators in tandem, one arranged to receive a NRZ electrical data signal and the other a clock signal at the data rate of the data signal. The phase difference between the data signal and the clock signal is controlled by adding a first dither signal to a bias signal applied to the modulator receiving the data signal, and a second dither signal, having a different frequency, to the phase difference. The amplitude of variations in the power of the optical output signal corresponding to cross-modulation of the first and second dither signals is detected and the phase difference is controlled in response to the detected amplitude.
    Type: Application
    Filed: February 27, 2004
    Publication date: September 1, 2005
    Inventors: Siegfried Gronbach, Stefan Weisser