Patents by Inventor Stefan Wirth

Stefan Wirth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10185040
    Abstract: A detector apparatus includes a scattered radiation grid; a scintillator unit for converting X-rays into a light quantity; an evaluation unit for converting the light quantity into electric signals; and a module-receiving appliance. The scintillator unit and the scattered radiation grid are mechanically connected to the module-receiving appliance via a first connection and the evaluation unit is mechanically connected to the module-receiving appliance via a second connection, independent of the first connection. The evaluation unit, the scintillator unit and the scattered radiation grid are aligned with respect to one another such that light quantity, when emitted from sub-regions of the scintillator unit, is registered by sub-regions of the evaluation unit.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: January 22, 2019
    Assignee: Siemens Healthcare GmbH
    Inventor: Stefan Wirth
  • Patent number: 10014430
    Abstract: A method is disclosed for detecting incident X-ray radiation by way of a direct-converting X-ray radiation detector. A semi-conductor material used for detection purposes is irradiated with additional radiation with an energy level of at least 1.6 eV in order to produce additional charge carriers. A direct-converting X-ray radiation detector is disclosed for detecting X-ray radiation, at least including a semi-conductor material used for X-ray detection and at least one radiation source which irradiates the semi-conductor material with additional radiation, the radiation having an energy level of at least 1.6 eV. A CT system including an X-ray radiation detector is also disclosed.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: July 3, 2018
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Peter Hackenschmied, Edgar Göderer, Christian Schröter, Matthias Strassburg, Stefan Wirth
  • Publication number: 20180120447
    Abstract: A radiation detector includes an intermediate layer, which is arranged between a detection layer with a number of detection elements and a number of readout units. In an example embodiment of this arrangement, the intermediate layer has a plurality of electrically-conductive connections between the detection elements and the readout units. An example embodiment further specifies a medical imaging system, as well as a method of using the heating apparatus.
    Type: Application
    Filed: October 31, 2017
    Publication date: May 3, 2018
    Applicant: Siemens Healthcare GmbH
    Inventors: Thorsten ERGLER, Harald GEYER, Michael HOSEMANN, Stefan WIRTH, Jan WREGE
  • Patent number: 9945966
    Abstract: A sensor chip, in particular for computerized tomography detectors, including an analog-digital converter electrically connected to an element detecting radiation. A problem addressed is that of defining a sensor chip which is as cost-efficient and reliable as possible. According to an embodiment of the invention, only one single crystalline base plate is used, on which all required components of the sensor chip are applied. A through-contact between the conductor paths or the contacts of both sides of the base plate is used as applicable in order to connect the components of both sides to each other.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: April 17, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventors: Mario Eichenseer, Thomas Reichel, Stefan Wirth
  • Patent number: 9938458
    Abstract: A method is for the production of a scintillator fiber. In an embodiment, the method includes provisioning a suspension of a binder dissolved in a solvent and a scintillator material; and pressing the suspension into a precipitation bath in which the binder is insoluble.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: April 10, 2018
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Cansu Bilgin, Juergen Leppert, Christian Schroeter, Stefan Wirth
  • Patent number: 9829586
    Abstract: A method is disclosed for detecting x-rays using an x-ray detector which includes a direct-conversion semiconductor detector element. Additional radiation is supplied to the semiconductor detector element using a radiation source, and the supply of the additional radiation is controlled and/or regulated on the basis of a specified target value. In at least one embodiment, the target value can be specified in a variable manner over time as a sequence of target values. An x-ray detector system is further disclosed, with which the method can be carried out.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: November 28, 2017
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Edgar Göderer, Peter Hackenschmied, Steffen Kappler, Björn Kreisler, Miguel Labayen De Inza, Daniel Niederlöhner, Mario Reinwand, Christian Schröter, Matthias Strassburg, Stefan Wirth
  • Publication number: 20170313938
    Abstract: A method is for the production of a scintillator fiber. In an embodiment, the method includes provisioning a suspension of a binder dissolved in a solvent and a scintillator material; and pressing the suspension into a precipitation bath in which the binder is insoluble.
    Type: Application
    Filed: April 20, 2017
    Publication date: November 2, 2017
    Applicant: Siemens Healthcare GmbH
    Inventors: Cansu BILGIN, Juergen LEPPERT, Christian SCHROETER, Stefan WIRTH
  • Publication number: 20170269236
    Abstract: A detector apparatus includes a scattered radiation grid; a scintillator unit for converting X-rays into a light quantity; an evaluation unit for converting the light quantity into electric signals; and a module-receiving appliance. The scintillator unit and the scattered radiation grid are mechanically connected to the module-receiving appliance via a first connection and the evaluation unit is mechanically connected to the module-receiving appliance via a second connection, independent of the first connection. The evaluation unit, the scintillator unit and the scattered radiation grid are aligned with respect to one another such that light quantity, when emitted from sub-regions of the scintillator unit, is registered by sub-regions of the evaluation unit.
    Type: Application
    Filed: March 15, 2017
    Publication date: September 21, 2017
    Applicant: Siemens Healthcare GmbH
    Inventor: Stefan WIRTH
  • Patent number: 9646731
    Abstract: A direct-converting x-ray radiation detector is disclosed for detecting x-ray radiation, in particular for use in a CT system. In an embodiment, the detector includes a semiconductor material used for detecting the x-ray radiation; at least one collimator; and at least one radiation source, to irradiate the semiconductor material with additional radiation. In at least one embodiment, the at least one collimator includes at least one reflection layer on a side facing the semiconductor material, on which the additional radiation is reflected to the semiconductor material. In another embodiment, a CT system including the direct-converting x-ray radiation detector, and a method for detecting incident x-ray radiation via a direct-converting x-ray radiation detector, in particular for use in a CT system, are disclosed.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: May 9, 2017
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Fabrice Dierre, Edgar Göderer, Peter Hackenschmied, Steffen Kappler, Björn Kreisler, Miguel Labayen De Inza, Daniel Niederlöhner, Mario Reinwand, Christian Schröter, Karl Stierstorfer, Matthias Strassburg, Justus Tonn, Stefan Wirth
  • Patent number: 9583228
    Abstract: A scattered radiation grid of a CT detector is disclosed and includes a plurality of detector elements arranged in multiple cells in the phi direction and in the z direction of a CT system, having a plurality of free passage channels arranged to correspond to the detector elements, and walls fully enclosing the free passage channels at the longitudinal sides thereof. According to an embodiment of the invention, the walls of the scattered radiation grid are produced using a 3D screen-printing method.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: February 28, 2017
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Mario Eichenseer, Andreas Freund, Stefan Wirth
  • Patent number: 9392985
    Abstract: A direct-conversion x-ray detector or x-ray detector module includes: a direct converter; at least one collimator; and at least one radiation source. The at least one collimator is arranged in a direction of radiation of the x-ray radiation in front of the direct converter, and to restrict direct irradiation of the direct converter by the x-ray radiation. The at least one radiation source is at a side of the direct converter, and configured to irradiate the direct converter with additional radiation. The at least one collimator includes: at least one reflection layer on a side facing the direct converter, and configured to reflect the additional radiation onto the direct converter; and a cooling facility configured to cool the at least one radiation source.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: July 19, 2016
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Thorsten Ergler, Andreas Freund, Björn Kreisler, Christian Schröter, Stefan Wirth
  • Patent number: 9322938
    Abstract: A detector module for a radiation detector is disclosed. In at least one embodiment, the detector module includes a converter layer with contacts, arranged distributed over an area on the rear side, for transmitting electrical signals, wherein the contacts are routed, by way of rewiring, to target contacts on a target region that is smaller than this area. This provides the conditions for simple and secure signal routing between the contacts on the converter layer and readout electronics. In particular, this is successful if a substrate layer used for stabilization purposes has a cutout for the target region, through which cutout the target contacts are directly connected to the signal-routing lines of readout electronics.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: April 26, 2016
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Peter Kämmerer, Thomas Reichel, Stefan Wirth
  • Publication number: 20160054457
    Abstract: A sensor chip, in particular for computerized tomography detectors, including an analog-digital converter electrically connected to an element detecting radiation. A problem addressed is that of defining a sensor chip which is as cost-efficient and reliable as possible. According to an embodiment of the invention, only one single crystalline base plate is used, on which all required components of the sensor chip are applied. A through-contact between the conductor paths or the contacts of both sides of the base plate is used as applicable in order to connect the components of both sides to each other.
    Type: Application
    Filed: March 19, 2014
    Publication date: February 25, 2016
    Inventors: Mario EICHENSEER, Thomas REICHEL, Stefan WIRTH
  • Patent number: 9151850
    Abstract: The invention relates to a radiation detector (100; 101; 102; 103; 104; 105; 106), having a scintillator (120) for generating electromagnetic radiation (202) in response to the action of incident radiation (200). The scintillator (120) has two opposing end faces (121; 122) and a lateral wall (123) between the end faces (121; 122). The radiation detector has, in addition, a conversion system (160) located on the lateral wall (123) of the scintillator (120), said system comprising a plurality of channels (165). Each channel (165) has a photocathode section (130; 131; 132) for generating electrons (204) in response to the action of electromagnetic radiation (202) that is generated by the scintillator (120), said electrons being multipliable by impact processes in the channels (165). A detection system (170) for detecting electrons (204) that have been multiplied in the channels (165) of the conversion system (160) is also provided.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: October 6, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Harry Hedler, Timothy Hughes, Martin Spahn, Stefan Wirth
  • Patent number: 9134434
    Abstract: An x-ray detector for a medical imaging device includes an anti-scatter grid, a measuring layer including a regular arrangement of measuring cells, and an evaluation unit. The anti-scatter grid covers the measuring layer and is aligned toward a specific focal point. The evaluation unit is configured to determine a focal position of an x-ray source relative to the focal point based on a local intensity difference of x-rays striking the measuring layer.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: September 15, 2015
    Assignee: Seimens Aktiengesellschaft
    Inventors: Daniel Niederlöhner, Bodo Reitz, Stefan Wirth
  • Publication number: 20150221406
    Abstract: A direct-converting x-ray radiation detector is disclosed for detecting x-ray radiation, in particular for use in a CT system. In an embodiment, the detector includes a semiconductor material used for detecting the x-ray radiation; at least one collimator; and at least one radiation source, to irradiate the semiconductor material with additional radiation. In at least one embodiment, the at least one collimator includes at least one reflection layer on a side facing the semiconductor material, on which the additional radiation is reflected to the semiconductor material. In another embodiment, a CT system including the direct-converting x-ray radiation detector, and a method for detecting incident x-ray radiation via a direct-converting x-ray radiation detector, in particular for use in a CT system, are disclosed.
    Type: Application
    Filed: July 9, 2013
    Publication date: August 6, 2015
    Inventors: Fabrice Dierre, Edgar Göderer, Peter Hackenschmied, Steffen Kappler, Björn Kreisler, Miguel Labayen De Inza, Daniel Niederlöhner, Mario Reinwand, Christian Schröter, Karl Stierstorfer, Matthias Strassburg, Justus Tonn, Stefan Wirth
  • Patent number: 9097808
    Abstract: The invention relates to a radiation detector (100; 101; 102; 103; 104; 105; 106), having a scintillator (120) for generating electromagnetic radiation (202) in response to the action of incident radiation (200). The scintillator (120) has two opposing end faces (121; 122) and a lateral wall (123) between the end faces (121; 122). The radiation detector has, in addition, a photocathode section (130) that is located on the lateral electrons wall (123) of the scintillator (120) and that generates electrons (204) in response to the action of electromagnetic radiation (202) that is generated by the scintillator (120), a microchannel plate (161; 162) comprising a plurality of channels (165), for multiplying the electrons (204) that have been generated by the photocathode section (130) and a detection system (171; 172) for detecting the electrons (204) that have been multiplied by means of the microchannel plate (161; 162).
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: August 4, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Harry Hedler, Timothy Hughes, Martin Spahn, Stefan Wirth
  • Publication number: 20150212215
    Abstract: A method is disclosed for detecting x-rays using an x-ray detector which includes a direct-conversion semiconductor detector element. Additional radiation is supplied to the semiconductor detector element using a radiation source, and the supply of the additional radiation is controlled and/or regulated on the basis of a specified target value. In at least one embodiment, the target value can be specified in a variable manner over time as a sequence of target values. An x-ray detector system is further disclosed, with which the method can be carried out.
    Type: Application
    Filed: July 9, 2013
    Publication date: July 30, 2015
    Inventors: Edgar Göderer, Peter Hackenschmied, Steffen Kappler, Björn Kreisler, Miguel Labayen De Inza, Daniel Niederlöhner, Mario Reinwand, Christian Schröter, Matthias Strassburg, Stefan Wirth
  • Publication number: 20150168569
    Abstract: A method is disclosed for detecting incident X-ray radiation by way of a direct-converting X-ray radiation detector. A semi-conductor material used for detection purposes is irradiated with additional radiation with an energy level of at least 1.6 eV in order to produce additional charge carriers. A direct-converting X-ray radiation detector is disclosed for detecting X-ray radiation, at least including a semi-conductor material used for X-ray detection and at least one radiation source which irradiates the semi-conductor material with additional radiation, the radiation having an energy level of at least 1.6 eV. A CT system including an X-ray radiation detector is also disclosed.
    Type: Application
    Filed: July 10, 2013
    Publication date: June 18, 2015
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Peter Hackenschmied, Edgar Göderer, Christian Schröter, Matthias Strassburg, Stefan Wirth
  • Patent number: 9039284
    Abstract: A method is disclosed for energy calibrating quantum-counting x-ray detectors in an x-ray installation including at least two x-ray systems turnable around a center of rotation. A target, for producing x-ray fluorescence radiation, is positioned between the first x-ray source and first x-ray detector and irradiated with x-radiation of the first x-ray source in such a way that x-ray fluorescence radiation which strikes the second x-ray detector from the target is produced by the x-radiation of the first x-ray source. The second x-ray detector is then energy calibrated by way of the x-ray fluorescence radiation of the target. The first x-ray detector can be energy calibrated in the same way with the aid of the x-radiation of the second x-ray source. With the proposed method, the x-ray detectors of a dual-source CT x-ray installation can be calibrated with little expenditure under conditions close to those of the system.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: May 26, 2015
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Mario Eichenseer, Steffen Kappler, Edgar Kraft, Björn Kreisler, Daniel Niederlöhner, Stefan Wirth