Patents by Inventor Stefanie Ann Ward MORTIMER

Stefanie Ann Ward MORTIMER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11667959
    Abstract: The present disclosure provides a system and method for the detection of rare mutations and copy number variations in cell free polynucleotides. Generally, the systems and methods comprise sample preparation, or the extraction and isolation of cell free polynucleotide sequences from a bodily fluid; subsequent sequencing of cell free polynucleotides by techniques known in the art; and application of bioinformatics tools to detect rare mutations and copy number variations as compared to a reference. The systems and methods also may contain a database or collection of different rare mutations or copy number variation profiles of different diseases, to be used as additional references in aiding detection of rare mutations, copy number variation profiling or general genetic profiling of a disease.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: June 6, 2023
    Assignee: Guardant Health, Inc.
    Inventors: AmirAli Talasaz, Stefanie Ann Ward Mortimer
  • Patent number: 11649491
    Abstract: Disclosed herein in are methods and systems for determining genetic variants (e.g., copy number variation) in a polynucleotide sample. A method for determining copy number variations includes tagging double-stranded polynucleotides with duplex tags, sequencing polynucleotides from the sample and estimating total number of polynucleotides mapping to selected genetic loci. The estimate of total number of polynucleotides can involve estimating the number of double-stranded polynucleotides in the original sample for which no sequence reads are generated. This number can be generated using the number of polynucleotides for which reads for both complementary strands are detected and reads for which only one of the two complementary strands is detected.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: May 16, 2023
    Assignee: GUARDANT HEALTH, INC.
    Inventors: AmirAli Talasaz, Helmy Eltoukhy, Stefanie Ann Ward Mortimer
  • Publication number: 20230141527
    Abstract: Methods of preparing double-stranded nucleic acids with single-stranded overhangs for amplification and sequencing are disclosed. Contacting a blunt-ended double-stranded nucleic acid molecules with Taq results in non-templated directed addition of a single nucleotide to the 3? ends of the nucleic acid with A added most frequently followed by G followed by C and T. G tailing is sufficiently frequent that the efficiency of ligation of nucleic acid molecules to adapters can be significantly increased by including adapters tailed with T and C. The ligation efficiency can be increased even further with blunted-ended adapters to ligate to blunt-ended nucleic acid molecules that failed to undergo tailing.
    Type: Application
    Filed: June 28, 2022
    Publication date: May 11, 2023
    Inventors: Andrew KENNEDY, Stefanie Ann Ward MORTIMER, AmirAli TALASAZ, Darya CHUDOVA, Helmy ELTOUKHY, Oliver ZILL, Richard B. LANMAN, Rebecca NAGY, Christine LEE, Kimberley BANKS
  • Patent number: 11643694
    Abstract: Disclosed herein are methods for use in detection of single nucleotide variants (SNVs) or indels. The methods may comprise enriching cell-free DNA molecules for a panel of genomic regions and deep sequencing the enriched cfDNA to detect the SNVs or indels.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: May 9, 2023
    Assignee: GUARDANT HEALTH, INC.
    Inventors: Stefanie Ann Ward Mortimer, AmirAli Talasaz, Darya Chudova, Helmy Eltoukhy
  • Patent number: 11639526
    Abstract: Disclosed herein in are methods and systems for determining genetic variants (e.g., copy number variation) in a polynucleotide sample. A method for determining copy number variations includes tagging double-stranded polynucleotides with duplex tags, sequencing polynucleotides from the sample and estimating total number of polynucleotides mapping to selected genetic loci. The estimate of total number of polynucleotides can involve estimating the number of double-stranded polynucleotides in the original sample for which no sequence reads are generated. This number can be generated using the number of polynucleotides for which reads for both complementary strands are detected and reads for which only one of the two complementary strands is detected.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: May 2, 2023
    Assignee: Guardant Health, Inc.
    Inventors: AmirAli Talasaz, Helmy Eltoukhy, Stefanie Ann Ward Mortimer
  • Patent number: 11639525
    Abstract: Disclosed herein in are methods and systems for determining genetic variants (e.g., copy number variation) in a polynucleotide sample. A method for determining copy number variations includes tagging double-stranded polynucleotides with duplex tags, sequencing polynucleotides from the sample and estimating total number of polynucleotides mapping to selected genetic loci. The estimate of total number of polynucleotides can involve estimating the number of double-stranded polynucleotides in the original sample for which no sequence reads are generated. This number can be generated using the number of polynucleotides for which reads for both complementary strands are detected and reads for which only one of the two complementary strands is detected.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: May 2, 2023
    Assignee: GUARDANT HEALTH, INC.
    Inventors: AmirAli Talasaz, Helmy Eltoukhy, Stefanie Ann Ward Mortimer
  • Patent number: 11608526
    Abstract: Disclosed herein in are methods and systems for determining genetic variants (e.g., copy number variation) in a polynucleotide sample. A method for determining copy number variations includes tagging double-stranded polynucleotides with duplex tags, sequencing polynucleotides from the sample and estimating total number of polynucleotides mapping to selected genetic loci. The estimate of total number of polynucleotides can involve estimating the number of double-stranded polynucleotides in the original sample for which no sequence reads are generated. This number can be generated using the number of polynucleotides for which reads for both complementary strands are detected and reads for which only one of the two complementary strands is detected.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: March 21, 2023
    Assignee: GUARDANT HEALTH, INC.
    Inventors: AmirAli Talasaz, Helmy Eltoukhy, Stefanie Ann Ward Mortimer
  • Publication number: 20230083814
    Abstract: Disclosed herein are methods, compositions, and devices for use in the early detection of cancer. The methods include preparing cell-free nucleic acid molecules from a subject for sequencing, sequencing a panel of regions in the cell-free nucleic acid molecules, and detecting one or more markers that are indicative of a cancer.
    Type: Application
    Filed: October 19, 2022
    Publication date: March 16, 2023
    Inventors: Stefanie Ann Ward MORTIMER, AmirAli TALASAZ, Darya CHUDOVA, Helmy ELTOUKHY
  • Publication number: 20220411877
    Abstract: Provided herein is a method for enriching a sample for polynucleotides comprising a breakpoint of a fusion gene, comprising: a) contacting a probe set comprising a plurality of polynucleotide probes, each probe configured to specifically hybridize to a fusion gene, wherein the set comprises one or more high affinity polynucleotide probes (e.g., a polynucleotide comprising one or more locked nucleic acid nucleotides), with a mixture of polynucleotides under hybridization conditions to produce probe-captured polynucleotides; and b) isolating the probe-captured polynucleotides from the mixture, to produce a sample enriched with polynucleotides comprising breakpoint fragments of the fusion gene.
    Type: Application
    Filed: March 14, 2022
    Publication date: December 29, 2022
    Inventor: Stefanie Ann Ward MORTIMER
  • Publication number: 20220389489
    Abstract: The present disclosure provides a system and method for the detection of rare mutations and copy number variations in cell free polynucleotides. Generally, the systems and methods comprise sample preparation, or the extraction and isolation of cell free polynucleotide sequences from a bodily fluid; subsequent sequencing of cell free polynucleotides by techniques known in the art; and application of bioinformatics tools to detect rare mutations and copy number variations as compared to a reference. The systems and methods also may contain a database or collection of different rare mutations or copy number variation profiles of different diseases, to be used as additional references in aiding detection of rare mutations, copy number variation profiling or general genetic profiling of a disease.
    Type: Application
    Filed: March 22, 2022
    Publication date: December 8, 2022
    Inventors: AmirAli TALASAZ, Stefanie Ann Ward MORTIMER
  • Patent number: 11519019
    Abstract: The disclosure provides methods for processing nucleic acid populations containing different forms (e.g., RNA and DNA, single-stranded or double-stranded) and/or extents of modification (e.g., cytosine methylation, association with proteins). These methods accommodate multiple forms and/or modifications of nucleic acid in a sample, such that sequence information can be obtained for multiple forms. The methods also preserve the identity of multiple forms or modified states through processing and analysis, such that analysis of sequence can be combined with epigenetic analysis.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: December 6, 2022
    Assignee: Guardant Health, Inc.
    Inventors: Andrew Kennedy, Stefanie Ann Ward Mortimer, Helmy Eltoukhy, AmirAli Talasaz
  • Patent number: 11519039
    Abstract: Disclosed herein are methods for use in detection of molecular residual disease. The methods may comprise deep sequencing a panel of genomic regions in cell-free DNA molecules and computer processing sequence reads to detect variants that are indicative of molecular residual disease.
    Type: Grant
    Filed: June 10, 2022
    Date of Patent: December 6, 2022
    Assignee: Guardant Health, Inc.
    Inventors: Stefanie Ann Ward Mortimer, AmirAli Talasaz, Darya Chudova, Helmy Eltoukhy
  • Publication number: 20220380842
    Abstract: Disclosed herein in are methods and systems for determining genetic variants (e.g., copy number variation) in a polynucleotide sample. A method for determining copy number variations includes tagging double-stranded polynucleotides with duplex tags, sequencing polynucleotides from the sample and estimating total number of polynucleotides mapping to selected genetic loci. The estimate of total number of polynucleotides can involve estimating the number of double-stranded polynucleotides in the original sample for which no sequence reads are generated. This number can be generated using the number of polynucleotides for which reads for both complementary strands are detected and reads for which only one of the two complementary strands is detected.
    Type: Application
    Filed: June 30, 2022
    Publication date: December 1, 2022
    Inventors: AmirAli TALASAZ, Helmy ELTOUKHY, Stefanie Ann Ward MORTIMER
  • Publication number: 20220325340
    Abstract: Disclosed herein in are methods and systems for determining genetic variants (e.g., copy number variation) in a polynucleotide sample. A method for determining copy number variations includes tagging double-stranded polynucleotides with duplex tags, sequencing polynucleotides from the sample and estimating total number of polynucleotides mapping to selected genetic loci. The estimate of total number of polynucleotides can involve estimating the number of double-stranded polynucleotides in the original sample for which no sequence reads are generated. This number can be generated using the number of polynucleotides for which reads for both complementary strands are detected and reads for which only one of the two complementary strands is detected.
    Type: Application
    Filed: June 28, 2022
    Publication date: October 13, 2022
    Inventors: AmirAli TALASAZ, Helmy ELTOUKHY, Stefanie Ann Ward MORTIMER
  • Publication number: 20220325360
    Abstract: Disclosed herein are methods for use in detection of molecular residual disease. The methods may comprise deep sequencing a panel of genomic regions in cell-free DNA molecules and computer processing sequence reads to detect variants that are indicative of molecular residual disease.
    Type: Application
    Filed: June 10, 2022
    Publication date: October 13, 2022
    Inventors: Stefanie Ann Ward MORTIMER, AmirAli TALASAZ, Darya CHUDOVA, Helmy ELTOUKHY
  • Patent number: 11447813
    Abstract: The present disclosure provides a system and method for the detection of rare mutations and copy number variations in cell free polynucleotides. Generally, the systems and methods comprise sample preparation, or the extraction and isolation of cell free polynucleotide sequences from a bodily fluid; subsequent sequencing of cell free polynucleotides by techniques known in the art; and application of bioinformatics tools to detect rare mutations and copy number variations as compared to a reference. The systems and methods also may contain a database or collection of different rare mutations or copy number variation profiles of different diseases, to be used as additional references in aiding detection of rare mutations, copy number variation profiling or general genetic profiling of a disease.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: September 20, 2022
    Assignee: GUARDANT HEALTH, INC.
    Inventors: AmirAli Talasaz, Stefanie Ann Ward Mortimer
  • Patent number: 11434523
    Abstract: The present disclosure provides a system and method for the detection of rare mutations and copy number variations in cell free polynucleotides. Generally, the systems and methods comprise sample preparation, or the extraction and isolation of cell free polynucleotide sequences from a bodily fluid; subsequent sequencing of cell free polynucleotides by techniques known in the art; and application of bioinformatics tools to detect rare mutations and copy number variations as compared to a reference. The systems and methods also may contain a database or collection of different rare mutations or copy number variation profiles of different diseases, to be used as additional references in aiding detection of rare mutations, copy number variation profiling or general genetic profiling of a disease.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: September 6, 2022
    Assignee: GUARDANT HEALTH, INC.
    Inventors: AmirAli Talasaz, Stefanie Ann Ward Mortimer
  • Patent number: 11384382
    Abstract: Methods of preparing double-stranded nucleic acids with single-stranded overhangs for amplification and sequencing are disclosed. Contacting a blunt-ended double-stranded nucleic acid molecules with Taq results in non-templated directed addition of a single nucleotide to the 3? ends of the nucleic acid with A added most frequently followed by G followed by C and T. G tailing is sufficiently frequent that the efficiency of ligation of nucleic acid molecules to adapters can be significantly increased by including adapters tailed with T and C. The ligation efficiency can be increased even further with blunted-ended adapters to ligate to blunt-ended nucleic acid molecules that failed to undergo tailing.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: July 12, 2022
    Inventors: Andrew Kennedy, Stefanie Ann Ward Mortimer
  • Publication number: 20220186323
    Abstract: Disclosed herein are methods for use in detection of single nucleotide variants (SNVs) or indels. The methods may comprise enriching cell-free DNA molecules for a panel of genomic regions and deep sequencing the enriched cfDNA to detect the SNVs or indels.
    Type: Application
    Filed: March 7, 2022
    Publication date: June 16, 2022
    Inventors: Stefanie Ann Ward MORTIMER, AmirAli TALASAZ, Darya CHUDOVA, Helmy ELTOUKHY
  • Patent number: 11359248
    Abstract: Disclosed herein are methods for use in detection of single nucleotide variants (SNVs) or indels. The methods may comprise enriching cell-free DNA molecules for a panel of genomic regions and deep sequencing the enriched cfDNA to detect the SNVs or indels.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: June 14, 2022
    Assignee: GUARDANT HEALTH, INC.
    Inventors: Stefanie Ann Ward Mortimer, Amirali Talasaz, Darya Chudova, Helmy Eltoukhy