Patents by Inventor Stefanie HERMANN

Stefanie HERMANN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11894696
    Abstract: In a method and an apparatus for detecting electrically conductive foreign bodies during inductive energy transmission between a primary coil (1) and a secondary coil (2), at least one sensor coil (5) is arranged between the primary coil (1) and the secondary coil (2), and a current flowing in the sensor coil (5) due to the induced voltage during the energy transmission is detected and evaluated. In this case, the sensor coil (5) is connected to at least one capacitor to form a resonant circuit which is matched to the excitation frequency of the primary coil (1). The phase position of the current in the resonant circuit in relation to a reference signal is then used to determine whether there are electrically conductive foreign bodies (4) between the primary coil (1) and the secondary coil (2). A high degree of sensitivity, also in relation to small electrically conductive foreign bodies within the energy transmission path, is achieved by means of the method and the apparatus.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: February 6, 2024
    Assignee: UNIVERSITÄT STUTTGART
    Inventors: Mike Böttigheimer, Nejila Parspour, Stefanie Hermann
  • Publication number: 20220029470
    Abstract: In a method and an apparatus for detecting electrically conductive foreign bodies during inductive energy transmission between a primary coil (1) and a secondary coil (2), at least one sensor coil (5) is arranged between the primary coil (1) and the secondary coil (2), and a current flowing in the sensor coil (5) due to the induced voltage during the energy transmission is detected and evaluated. In this case, the sensor coil (5) is connected to at least one capacitor to form a resonant circuit which is matched to the excitation frequency of the primary coil (1). The phase position of the current in the resonant circuit in relation to a reference signal is then used to determine whether there are electrically conductive foreign bodies (4) between the primary coil (1) and the secondary coil (2). A high degree of sensitivity, also in relation to small electrically conductive foreign bodies within the energy transmission path, is achieved by means of the method and the apparatus.
    Type: Application
    Filed: December 20, 2018
    Publication date: January 27, 2022
    Inventors: Mike BÖTTIGHEIMER, Nejila PARSPOUR, Stefanie HERMANN