Patents by Inventor Stefano Bietto

Stefano Bietto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11814287
    Abstract: A process and apparatus for producing a hydrogen-enriched product and recovering CO2 from an effluent stream from a hydrogen production process unit are described. The process utilizes a CO2 recovery system integrated with a PSA system that produces at least two product streams to recover additional hydrogen and CO2 from the tail gas stream of a hydrogen PSA unit in the hydrogen production process.
    Type: Grant
    Filed: October 22, 2021
    Date of Patent: November 14, 2023
    Assignee: UOP LLC
    Inventors: Addison Cruz, Bradley Russell, Erick J. Bennett, III, Kurt Kraus, Stefano Bietto, William Cady, Kyle Cuellar, Oluwaseyi Kayode
  • Patent number: 11807532
    Abstract: A process and apparatus for producing a hydrogen-enriched product and recovering CO2 from an effluent stream from a hydrogen production unit are described. The effluent from the hydrogen production unit, which comprises a mixture of gases comprising hydrogen, carbon dioxide, water, and at least one of methane, carbon monoxide, nitrogen, and argon, is sent to a PSA system that produces at least two product streams for separation. The PSA system that produces at least two product streams separates the gas mixture into a high-pressure hydrogen stream enriched in hydrogen, optionally a second gas stream containing the majority of the impurities, and a low-pressure tail gas stream enriched in CO2 and some impurities. The CO2-rich tail gas stream is compressed and sent to a CO2 recovery unit, where a CO2-enriched stream is recovered. The CO2-depleted overhead gas stream is recycled to the PSA system that produces at least two product streams.
    Type: Grant
    Filed: October 22, 2021
    Date of Patent: November 7, 2023
    Assignee: UOP LLC
    Inventors: Addison Cruz, Bradley Russell, Erick J. Bennett, III, William Cady, Kurt Kraus, Stefano Bietto, Kyle Cuellar, Oluwaseyi Kayode
  • Patent number: 11772966
    Abstract: A bio-renewable conversion process for making fuel from bio-renewable feedstocks is combined with a hydrogen production process that includes recovery of CO2. The integrated process uses a purge gas stream comprising hydrogen from the bio-renewable hydrocarbon production process in the hydrogen production process.
    Type: Grant
    Filed: October 22, 2021
    Date of Patent: October 3, 2023
    Assignee: UOP LLC
    Inventors: William Cady, Elizabeth Carter, Bradley Russell, James T. Wexler, Addison Cruz, Erick J. Bennett, III, Kurt Kraus, Stefano Bietto, Kyle Cuellar, Oluwaseyi Kayode, Suryanarayana Murthy Konda Naga Venkata
  • Publication number: 20230202841
    Abstract: A bio-renewable conversion process for making fuel from bio-renewable feedstocks is combined with a hydrogen production process that includes recovery of CO2. The integrated process uses a purge gas stream comprising hydrogen from the bio-renewable hydrocarbon production process in the hydrogen production process.
    Type: Application
    Filed: February 28, 2023
    Publication date: June 29, 2023
    Inventors: William Cady, Elizabeth Carter, Bradley Russell, James T. Wexler, Addison Cruz, Erick J. Bennett, III, Kurt Kraus, Stefano Bietto, Kyle Cuellar, Oluwaseyi Kayode, Suryanarayana Murthy Konda Naga Venkata
  • Publication number: 20220306468
    Abstract: A bio-renewable conversion process for making fuel from bio-renewable feedstocks is combined with a hydrogen production process that includes recovery of CO2. The integrated process uses a purge gas stream comprising hydrogen from the bio-renewable hydrocarbon production process in the hydrogen production process.
    Type: Application
    Filed: October 22, 2021
    Publication date: September 29, 2022
    Inventors: William Cady, Elizabeth Carter, Bradley Russell, James T. Wexler, Addison Cruz, Erick J. Bennett, III, Kurt Kraus, Stefano Bietto, Kyle Cuellar, Oluwaseyi Kayode, Suryanarayana Murthy Konda Naga Venkata
  • Publication number: 20220306463
    Abstract: A process and apparatus for producing a hydrogen-enriched product and recovering CO2 from an effluent stream from a hydrogen production process unit are described. The process utilizes a CO2 recovery system integrated with a PSA system that produces at least two product streams to recover additional hydrogen and CO2 from the tail gas stream of a hydrogen PSA unit in the hydrogen production process.
    Type: Application
    Filed: October 22, 2021
    Publication date: September 29, 2022
    Inventors: Addison Cruz, Bradley Russell, Erick J. Bennett, III, Kurt Kraus, Stefano Bietto, William Cady, Kyle Cuellar, Oluwaseyi Kayode
  • Publication number: 20220306464
    Abstract: A process and apparatus for producing a hydrogen-enriched product and recovering CO2 from an effluent stream from a hydrogen production unit are described. The effluent from the hydrogen production unit, which comprises a mixture of gases comprising hydrogen, carbon dioxide, water, and at least one of methane, carbon monoxide, nitrogen, and argon, is sent to a PSA system that produces at least two product streams for separation. The PSA system that produces at least two product streams separates the gas mixture into a high-pressure hydrogen stream enriched in hydrogen, optionally a second gas stream containing the majority of the impurities, and a low-pressure tail gas stream enriched in CO2 and some impurities. The CO2-rich tail gas stream is compressed and sent to a CO2 recovery unit, where a CO2-enriched stream is recovered. The CO2-depleted overhead gas stream is recycled to the PSA system that produces at least two product streams.
    Type: Application
    Filed: October 22, 2021
    Publication date: September 29, 2022
    Inventors: Addison Cruz, Bradley Russell, Erick J. Bennett, III, William Cady, Kurt Kraus, Stefano Bietto, Kyle Cuellar, Oluwaseyi Kayode
  • Publication number: 20220307689
    Abstract: A burner apparatus and process are described. The burner apparatus includes an inlet chamber in communication with a combustion chamber. A primary conduit delivers fuel gas to the combustion chamber. Each of a plurality of primary tips is located in the throat of the burner tile. Each of a plurality of cavities is disposed on a downstream wall of the burner tile and stabilize the flame. The primary tips have an end port and a lateral port. A secondary conduit provides fuel gas to a plurality of secondary tips. In a passive control mode, the fuel gas to the primary tips and secondary tips is a mixed gas comprising flue gas and fuel gas. In an active mode, valves are provided to proportion the amount of fuel gas fed to the primary tips and the amount of flue gas provided to the secondary tips.
    Type: Application
    Filed: October 22, 2021
    Publication date: September 29, 2022
    Inventors: Kurt Kraus, Stefano Bietto
  • Patent number: 11105508
    Abstract: A flare burner for burning combustible waste gases with a manifold, at least two arms, and a plurality of outlets disposed on the plurality of arms. The arms may be perpendicular to the manifold. The arms may also extend outwardly from the manifold. The arms may extend into annuli, to produce oppositely flowing exit gas. A curved dispersing surface may be disposed above the manifold. The arms may comprise a curvilinear shape or include both a linear and a curvilinear portion. The arms are unequal in length and may curve in an opposite direction from each other. The outlets are configured and spaced such that flame is short relative to size of the flare burner.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: August 31, 2021
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Matthew Martin, Kurt E. Kraus, Christopher Ferguson, Stefano Bietto
  • Publication number: 20200240631
    Abstract: A flare burner for burning combustible waste gases with a manifold, at least two arms, and a plurality of outlets disposed on the plurality of arms. The arms may be perpendicular to the manifold. The arms may also extend outwardly from the manifold. The arms may extend into annuli, to produce oppositely flowing exit gas. A curved dispersing surface may be disposed above the manifold. The arms may comprise a curvilinear shape or include both a linear and a curvilinear portion. The arms are unequal in length and may curve in an opposite direction from each other. The outlets are configured and spaced such that flame is short relative to size of the flare burner.
    Type: Application
    Filed: February 4, 2020
    Publication date: July 30, 2020
    Inventors: Matthew Martin, Kurt E. Kraus, Christopher Ferguson, Stefano Bietto
  • Patent number: 10598375
    Abstract: A flare burner for burning combustible waste gases with a manifold, at least two arms, and a plurality of outlets disposed on the plurality of arms. The arms may be perpendicular to the manifold. The arms may also extend outwardly from the manifold. The arms may extend into annuli, to produce oppositely flowing exit gas. A curved dispersing surface may be disposed above the manifold. The arms may comprise a curvilinear shape, or include both a linear and a curvilinear portion. The arms are unequal in length and may curve in an opposite direction from each other. The outlets are configured and spaced such that flame is short relative to size of the flare burner.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: March 24, 2020
    Assignee: Honeywell International Inc.
    Inventors: Matthew A. Martin, Kurt E. Kraus, Christopher Ferguson, Stefano Bietto
  • Publication number: 20180119950
    Abstract: A flare burner for burning combustible waste gases with a manifold, at least two arms, and a plurality of outlets disposed on the plurality of arms. The arms may be perpendicular to the manifold. The arms may also extend outwardly from the manifold. The arms may extend into annuli, to produce oppositely flowing exit gas. A curved dispersing surface may be disposed above the manifold. The arms may comprise a curvilinear shape, or include both a linear and a curvilinear portion. The arms are unequal in length and may curve in an opposite direction from each other. The outlets are configured and spaced such that flame is short relative to size of the flare burner.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 3, 2018
    Inventors: Matthew A. Martin, Kurt E. Kraus, Christopher Ferguson, Stefano Bietto
  • Patent number: 9816705
    Abstract: A flare burner for burning combustible waste gases with a manifold, a plurality of arms, and a plurality of outlets disposed on the plurality of arms. The arms may be perpendicular to the manifold. The arms may also extend outwardly from the manifold. The arms may extend into annuli, to produce oppositely flowing exit gas. A curved dispersing surface may be disposed above the manifold. The arms may comprise a curvilinear shape, or include both a linear and a curvilinear portion. The outlets are configured and spaced such that flame is short relative to size of the flare burner.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: November 14, 2017
    Assignee: Honeywell International Inc.
    Inventors: Matthew Martin, Stefano Bietto, Kurt Kraus, Dusty Ray Richmond
  • Patent number: 9702555
    Abstract: A process is provided for analyzing and visualizing conditions of a combustion process in an enclosure, and includes steps of providing continuously updated images of the enclosure for visualization of the enclosure to a user, using a viewing device having a display representing a virtual window of the enclosure; detecting a viewing angle and a viewing position of the user relative to the enclosure; illustrating an interior prospect of the enclosure relative to the viewing angle and position of the user based on the images of the enclosure; and adjusting, in realtime, the illustration of the interior prospect of the enclosure as at least one of the viewing angle and position of the user is changed for reflecting a changed view of the user.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: July 11, 2017
    Assignee: Honeywell International Inc.
    Inventors: Stefano Bietto, Matthew Martin, Kurt Kraus
  • Patent number: 9696210
    Abstract: A process is provided for mapping temperatures in an enclosure during a combustion process. A device setting of an image-capturing device is provided. An intensity-temperature mapping is generated by performing an intensity-temperature calibration based on an intensity of an image pixel in a field of view (FOV) generated by the image-capturing device, a corresponding temperature measurement, and a selected device setting. Each emitted radiation of selected regions is detected based on a first image in the FOV. At least one region is determined whether the region is poor responsive, based on the intensity-temperature mapping associated with the device setting. The at least one poor responsive region is replaced with acceptable regions unaffected by the saturation from at least one other image captured at a different device setting for higher temperature resolution.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: July 4, 2017
    Assignee: Honeywell International Inc.
    Inventors: Sharath Venkatesha, Kwong W. Au, Stefano Bietto
  • Patent number: 9664568
    Abstract: A process is provided for mapping temperatures in an enclosure. A spectral band for a multi-spectral image-capturing device is selected. An intensity-temperature mapping is generated by performing an intensity-temperature calibration based on an intensity of an image pixel in a field of view (FOV) generated by the multi-spectral image-capturing device, a corresponding temperature measurement, and a selected device setting of the image-capturing device. An emitted radiation is detected based on a first spectral image in the FOV. At least one region is determined whether it is poor responsive, which is underexposed or overexposed, such that an accurate temperature is unable to be estimated based on a temperature value associated with the spectral band. Temperatures of the at least one poor responsive regions are replaced with temperatures from corresponding acceptable regions from at least one other spectral image to provide an extended temperature mapping of the enclosure.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: May 30, 2017
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Kwong W. Au, Sharath Venkatesha, Stefano Bietto
  • Publication number: 20160138805
    Abstract: A flare burner for burning combustible waste gases with a manifold, a plurality of arms, and a plurality of outlets disposed on the plurality of arms. The arms may be perpendicular to the manifold. The arms may also extend outwardly from the manifold. The arms may extend into annuli, to produce oppositely flowing exit gas. A curved dispersing surface may be disposed above the manifold. The arms may comprise a curvilinear shape, or include both a linear and a curvilinear portion. The outlets are configured and spaced such that flame is short relative to size of the flare burner.
    Type: Application
    Filed: November 18, 2014
    Publication date: May 19, 2016
    Inventors: Matthew Martin, Stefano Bietto, Kurt Kraus, Dusty Ray Richmond
  • Publication number: 20160097680
    Abstract: A process is provided for diagnosing conditions of a combustion process in an enclosure is provided, and includes steps of: capturing images of selected regions of the enclosure using a plurality of image-capturing devices connected to the enclosure; receiving a plurality of signals representing the conditions of the combustion process from at least one sensor associated with the enclosure; estimating a three-dimensional (3D) radiance or temperature field of the combustion process in the selected regions; evaluating the captured images, the plurality of signals, and the 3D radiance or temperature field for analyzing the conditions of the combustion process at a predetermined interval; and adjusting at least one furnace parameter based on the evaluation of the images, the plurality of signals, and the 3D radiance or temperature field for controlling the conditions of the combustion process in the enclosure.
    Type: Application
    Filed: October 7, 2014
    Publication date: April 7, 2016
    Inventors: Stefano Bietto, Kurt Kraus, Matthew Martin
  • Publication number: 20160097533
    Abstract: A process is provided for analyzing and visualizing conditions of a combustion process in an enclosure, and includes steps of providing continuously updated images of the enclosure for visualization of the enclosure to a user, using a viewing device having a display representing a virtual window of the enclosure; detecting a viewing angle and a viewing position of the user relative to the enclosure; illustrating an interior prospect of the enclosure relative to the viewing angle and position of the user based on the images of the enclosure; and adjusting, in realtime, the illustration of the interior prospect of the enclosure as at least one of the viewing angle and position of the user is changed for reflecting a changed view of the user.
    Type: Application
    Filed: October 7, 2014
    Publication date: April 7, 2016
    Inventors: Stefano Bietto, Matthew Martin, Kurt Kraus
  • Publication number: 20150362371
    Abstract: A process is provided for mapping temperatures in an enclosure. A spectral band for a multi-spectral image-capturing device is selected. An intensity-temperature mapping is generated by performing an intensity-temperature calibration based on an intensity of an image pixel in a field of view (FOV) generated by the multi-spectral image-capturing device, a corresponding temperature measurement, and a selected device setting of the image-capturing device. An emitted radiation is detected based on a first spectral image in the FOV. At least one region is determined whether it is poor responsive, which is underexposed or overexposed, such that an accurate temperature is unable to be estimated based on a temperature value associated with the spectral band. Temperatures of the at least one poor responsive regions are replaced with temperatures from corresponding acceptable regions from at least one other spectral image to provide an extended temperature mapping of the enclosure.
    Type: Application
    Filed: June 16, 2014
    Publication date: December 17, 2015
    Inventors: Kwong W. Au, Sharath Venkatesha, Stefano Bietto