Patents by Inventor Stefano VESPUCCI

Stefano VESPUCCI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240077436
    Abstract: The crystal structure is determined based on one or more second electron diffraction patterns acquired at selected zone axes at which the strength of dynamical effect is strong. The zone axes are selected by ranking the accessible zone axes determined from multiple first electron diffraction patterns.
    Type: Application
    Filed: September 7, 2022
    Publication date: March 7, 2024
    Applicant: FEI Company
    Inventors: Stefano VESPUCCI, Bart BUIJSSE
  • Patent number: 11815476
    Abstract: Crystallographic information of crystalline sample can be determined from one or more three-dimensional diffraction pattern datasets generated based on diffraction patterns collected from multiple crystals. The crystals for diffraction pattern acquisition may be selected based on a sample image. At a location of each selected crystal, multiple diffraction patterns of the crystal are acquired at different angles of incidence by tilting the electron beam, wherein the sample is not rotated while the electron beam is directed at the selected crystal.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: November 14, 2023
    Assignee: FEI Company
    Inventors: Bart Buijsse, Jaydeep Sanjay Belapure, Alexander Henstra, Michael Patrick Janus, Stefano Vespucci
  • Publication number: 20220317066
    Abstract: Crystallographic information of crystalline sample can be determined from one or more three-dimensional diffraction pattern datasets generated based on diffraction patterns collected from multiple crystals. The crystals for diffraction pattern acquisition may be selected based on a sample image. At a location of each selected crystal, multiple diffraction patterns of the crystal are acquired at different angles of incidence by tilting the electron beam, wherein the sample is not rotated while the electron beam is directed at the selected crystal.
    Type: Application
    Filed: March 30, 2021
    Publication date: October 6, 2022
    Applicant: FEI Company
    Inventors: Bart BUIJSSE, Jaydeep Sanjay BELAPURE, Alexander HENSTRA, Michael Patrick JANUS, Stefano VESPUCCI
  • Patent number: 11211223
    Abstract: A method for imaging a sample with charged particles comprises directing charged particles towards the sample along a primary axis, and simultaneously detecting a first portion and a second portion of the charged particles transmitted through the sample with a first detector and a second detector, respectively. The second detector is positioned downstream of the first detector. Each of the transmitted charged particles exits the sample at an exit angle between a direction of the transmitted charged particle and the primary axis. The exit angles of the first portion of the transmitted charged particles overlap with the exit angles of the second portion of the transmitted charged particles. In this way, complimentary information, such as the structural and compositional information, may be obtained simultaneously.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: December 28, 2021
    Assignee: FEI Company
    Inventors: Ivan Lazić, Stefano Vespucci, Eric Gerardus Bosch, Bert Henning Freitag
  • Patent number: 10234282
    Abstract: The present invention refers to a method for determining a position of a divergent radiation source (1), comprising Irradiating a pixel detector (2) with a predetermined intensity distribution of radiation with wavelength ? originated from the radiation source (1), wherein the pixel detector (2) comprises a plurality of pixels with pixel coordinates (xi, yi, zi); Detecting, for each of the plurality of pixels, an intensity of the incident radiation (10); Determining, for each of the plurality of pixels, an incidence direction of the incident radiation using information on an orientation of an internal periodic structure at the pixel and the predetermined intensity distribution, wavelength ? and the detected intensity; and Determining the position (xp, yp, zp) of the radiation source (1) using the pixel coordinates (xi, yi, zi) and the incidence direction for each of the plurality of pixels.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: March 19, 2019
    Assignees: Brunker Nano GmbH, University of Strathclyde
    Inventors: Aimo Winkelmann, Stefano Vespucci
  • Patent number: 10197393
    Abstract: The present invention refers to a method for determining a position of a divergent radiation source (1), comprising Irradiating a pixel detector (2) with a predetermined intensity distribution of radiation with wavelength ? originated from the radiation source (1), wherein the pixel detector (2) comprises a plurality of pixels with pixel coordinates (xi, yi, zi); Detecting, for each of the plurality of pixels, an intensity of the incident radiation (10); Determining, for each of the plurality of pixels, an incidence direction of the incident radiation using information on an orientation of an internal periodic structure at the pixel and the predetermined intensity distribution, wavelength ? and the detected intensity; and Determining the position (xp, yp, zp) of the radiation source (1) using the pixel coordinates (xi, yi, zi) and the incidence direction for each of the plurality of pixels.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: February 5, 2019
    Assignees: Brunker Nano GmbH, University of Strathclyde
    Inventors: Aimo Winkelmann, Stefano Vespucci
  • Publication number: 20180010909
    Abstract: The present invention refers to a method for determining a position of a divergent radiation source (1), comprising Irradiating a pixel detector (2) with a predetermined intensity distribution of radiation with wavelength ? originated from the radiation source (1), wherein the pixel detector (2) comprises a plurality of pixels with pixel coordinates (xi, yi, zi); Detecting, for each of the plurality of pixels, an intensity of the incident radiation (10); Determining, for each of the plurality of pixels, an incidence direction of the incident radiation using information on an orientation of an internal periodic structure at the pixel and the predetermined intensity distribution, wavelength ? and the detected intensity; and Determining the position (xp, yp, zp) of the radiation source (1) using the pixel coordinates (xi, yi, zi) and the incidence direction for each of the plurality of pixels.
    Type: Application
    Filed: July 6, 2017
    Publication date: January 11, 2018
    Inventors: Aimo WINKELMANN, Stefano VESPUCCI