Patents by Inventor Steffen Bollmann

Steffen Bollmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11940519
    Abstract: A training method for training neural networks to determine a magnetic susceptibility distribution of a sample may include: storing a simulated magnetic susceptibility map of the sample, generating a modified magnetic susceptibility map by combining an influence of one or more external magnetic susceptibility sources with the simulated magnetic susceptibility map and storing the modified magnetic susceptibility maps. The method may include generating a first training image by applying a quantitative susceptibility mapping model the modified magnetic susceptibility map and storing the first training image, applying the first neural network to the first image and a second neural network to an output of the first neural network and changing network parameters of the first and the second neural network depending on a deviation of an output of the second artificial neural network from the simulated magnetic susceptibility map.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: March 26, 2024
    Assignee: Siemens Healthineers AG
    Inventors: Kieran O'Brien, Jin Jin, Steffen Bollmann, Markus Barth, Francesco Cognolato
  • Publication number: 20220342022
    Abstract: A training method for training neural networks to determine a magnetic susceptibility distribution of a sample may include: storing a simulated magnetic susceptibility map of the sample, generating a modified magnetic susceptibility map by combining an influence of one or more external magnetic susceptibility sources with the simulated magnetic susceptibility map and storing the modified magnetic susceptibility maps. The method may include generating a first training image by applying a quantitative susceptibility mapping model the modified magnetic susceptibility map and storing the first training image, applying the first neural network to the first image and a second neural network to an output of the first neural network and changing network parameters of the first and the second neural network depending on a deviation of an output of the second artificial neural network from the simulated magnetic susceptibility map.
    Type: Application
    Filed: April 21, 2022
    Publication date: October 27, 2022
    Applicants: Siemens Healthcare GmbH, The University of Queensland
    Inventors: Kieran O'Brien, Jin Jin, Steffen Bollmann, Markus Barth, Francesco Cognolato
  • Patent number: 11448717
    Abstract: Techniques are disclosed to leverage the use of convolutional neural networks or similar machine learning algorithms to predict an underlying susceptibility distribution from MRI phase data, thereby solving the ill-posed inverse problem. These techniques include the use of Deep Quantitative Susceptibility “DeepQSM” mapping, which uses a large amount of simulated susceptibility distributions and computes phase distribution using a unique forward solution. These examples are then used to train a deep convolutional neuronal network to invert the ill-posed problem.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: September 20, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Kieran O'Brien, Markus Barth, Steffen Bollmann
  • Patent number: 10732235
    Abstract: In a magnetic resonance method and apparatus, deficiencies in conventional masking in quantitative susceptibility mapping (QSM) are addressed by the inclusion of an additional step in the conventional QSM post-processing pipeline. In this additional step, atlas-based segmentation techniques, which have been developed for morphological applications such as T1w MPRAGE are used in order to provide the mask. This mask is then fed to the remainder of the QSM post-processing pipeline.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: August 4, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Kieran O'Brien, Markus Barth, Steffen Bollmann, Benedicte Marechal
  • Publication number: 20190302200
    Abstract: In a magnetic resonance method and apparatus, deficiencies in conventional masking in quantitative susceptibility mapping (QSM) are addressed by the inclusion of an additional step in the conventional QSM post-processing pipeline. In this additional step, atlas-based segmentation techniques, which have been developed for morphological applications such as T1w MPRAGE are used in order to provide the mask. This mask is then fed to the remainder of the QSM post-processing pipeline.
    Type: Application
    Filed: March 29, 2018
    Publication date: October 3, 2019
    Applicant: Siemens Healthcare GmbH
    Inventors: Kieran O'Brien, Markus Barth, Steffen Bollmann, Benedicte Marechal
  • Publication number: 20190204401
    Abstract: Techniques are disclosed to leverage the use of convolutional neural networks or similar machine learning algorithms to predict an underlying susceptibility distribution from MRI phase data, thereby solving the ill-posed inverse problem. These techniques include the use of Deep Quantitative Susceptibility “DeepQSM” mapping, which uses a large amount of simulated susceptibility distributions and computes phase distribution using a unique forward solution. These examples are then used to train a deep convolutional neuronal network to invert the ill-posed problem.
    Type: Application
    Filed: December 31, 2018
    Publication date: July 4, 2019
    Applicant: Siemens Healthcare GmbH
    Inventors: Kieran O'Brien, Markus Barth, Steffen Bollmann