Patents by Inventor Steffen Renisch

Steffen Renisch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150003709
    Abstract: A medical imaging system (5) includes one or more processors and a display device (36). The one or more processors are programmed to receive (60) a first image (10) contrasting regions of tissue with a distinct radiotracer accumulation probability and generate (64) a constraint map (20) based on the regions of tissue with the distinct radiotracer accumulation probability. The one or more processors are programmed to reconstruct (70) a second image (44) with redistribution of a measured radiotracer based on the constraint map (20) and acquired image raw data (23) registered to the constraint map. The display device (36) displays the reconstructed second image.
    Type: Application
    Filed: February 15, 2013
    Publication date: January 1, 2015
    Inventors: Peter Boernert, Steffen Renisch, Susanne Heinzer
  • Patent number: 8892188
    Abstract: An imaging method for identifying abnormal tissue in the lung is provided, comprising the recording of slice images of the lung by means of X-ray radiation, recording of blood vessels, differentiation of blood vessels and abnormal tissue, segmentation of the abnormal tissue and display of the segmented abnormal tissue on an output device. In addition, a computer tomograph for identifying abnormal tissue in the lung is provided, having a radiation source for recording slice images of the lung and blood vessels by means of X-ray radiation, a computer unit for differentiating the blood vessels from the abnormal tissue and for segmenting the abnormal tissue, as well as an output device for displaying the segmented abnormal tissue.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: November 18, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Thomas Buelow, Rafael Wiemker, Cristian Lorenz, Steffen Renisch, Thomas Blaffert
  • Publication number: 20140330119
    Abstract: An imaging method for identifying abnormal tissue in the lung is provided, comprising the recording of slice images of the lung by means of X-ray radiation, recording of blood vessels, differentiation of blood vessels and abnormal tissue, segmentation of the abnormal tissue and display of the segmented abnormal tissue on an output device. In addition, a computer tomograph for identifying abnormal tissue in the lung is provided, having a radiation source for recording slice images of the lung and blood vessels by means of X-ray radiation, a computer unit for differentiating the blood vessels from the abnormal tissue and for segmenting the abnormal tissue, as well as an output device for displaying the segmented abnormal tissue.
    Type: Application
    Filed: July 17, 2014
    Publication date: November 6, 2014
    Inventors: THOMAS BUELOW, RAFAEL WIEMKER, CRISTIAN LORENZ, STEFFEN RENISCH, THOMAS BLAFFERT
  • Patent number: 8798343
    Abstract: A system for displaying lung ventilation information, the system comprising an input (12) and a processing unit (15). The input being provided for receiving multiple CT images (71) of a lung, each CT image (71) corresponding to one phase of at least two different phases in a respiratory cycle. The processing unit (15) being configured to compare CT images (71) corresponding to different phases in the respiratory cycle for determining a deformation vector field for each phase, to generate for each phase a ventilation image (72) based on the corresponding deformation vector field, to spatially align the ventilation images (72), and to generate for at least one common position (62) in each one of the aligned ventilation images (72), a function (81) of a time course of a ventilation value for said common position (62), each ventilation value in the function (81) being based on the deformation vector fields corresponding to the aligned ventilation images (73).
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: August 5, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Sven Kabus, Cristian Lorenz, Nicole Schadewaldt, Roland Opfer, Ingwer Curt Carlsen, Steffen Renisch, Joerg Sabczynski, Hans Barschdorf, Jens Von Berg, Thomas Blaffert, Tobias Klinder
  • Patent number: 8787620
    Abstract: A nuclear imaging system includes a crystal identification system which receives a flood image which includes a plurality of peaks, each peak responsive to radiation detected by a corresponding scintillator crystal. A crystal identification processor partitions the flood image into a plurality of candidate regions with a watershed segmentator implementing a watershed algorithm. The candidate regions are linked in an adjacency graph, and then classified as background or relevant, where relevant regions contain a peak within the watershed lines. The regions are then assigned to a crystal according to an objective function and an assignability score. A calibration processor maps the peaks to a rectangular grid.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: July 22, 2014
    Assignee: Koninklijke Philps N.V.
    Inventors: Thomas Laurence, Sharon X. Wang, Jerome J. Griesmer, Thomas Blaffert, Zhiqiang Hu, Steffen Renisch
  • Publication number: 20140193054
    Abstract: The invention relates to an apparatus for generating an attenuation correction map. An image providing unit (5, 6) provides an image of an object comprising different element classes and a segmentation unit (11) applies a segmentation to the image for generating a segmented image comprising image regions corresponding to the element classes. The segmentation is based on at least one of a watershed segmentation and a body contour segmentation based on a contiguous skin and fat layers in the image. A feature determination unit (12) determines features of at least one of a) the image regions and b) boundaries between the image regions depending on image values of the image and an assigning unit (13) assigns attenuation values to the image regions based on the determined features for generating the attenuation correction map.
    Type: Application
    Filed: May 22, 2012
    Publication date: July 10, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Thomas Blaffert, Steffen Renisch, Bernd Schweizer, Zhiqiang Hu
  • Publication number: 20140133728
    Abstract: The invention relates to an apparatus for generating assignments between image regions of an image of an object and element classes. The apparatus (1) comprises an assigning unit (13) for assigning element classes to image regions of an element image of the object, which is indicative of a distribution of the element classes, depending on region and/or boundary features, which are determined depending on image values of a provided object image and provided first preliminary assignments. Thus, the resulting element image with the assignments to the element classes is not necessarily based on the provided object image only, but can also be based on the provided preliminary assignments. If the quality of the assignments defined by the element image would be restricted due to restrictions of the provided object image, these restrictions of the provided image can therefore be compensated by the preliminary assignments such that the quality of the resulting element image can be improved.
    Type: Application
    Filed: May 23, 2012
    Publication date: May 15, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Thomas Blaffert, Steffen Renisch, Bernd Schweizer, Zhiqiang Hu
  • Publication number: 20130315454
    Abstract: A nuclear imaging system includes a crystal identification system which receives a flood image which includes a plurality of peaks, each peak responsive to radiation detected by a corresponding scintillator crystal. A crystal identification processor partitions the flood image into a plurality of candidate regions with a watershed segmentator implementing a watershed algorithm. The candidate regions are linked in an adjacency graph, and then classified as background or relevant, where relevant regions contain a peak within the watershed lines. The regions are then assigned to a crystal according to an objective function and an assignability score. A calibration processor maps the peaks to a rectangular grid.
    Type: Application
    Filed: July 31, 2013
    Publication date: November 28, 2013
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Thomas LAURENCE, Sharon X. WANG, Jerome J. GRIESMER, Thomas BLAFFERT, Zhiqiang HU, Steffen RENISCH
  • Patent number: 8526697
    Abstract: The present invention relates to an apparatus (1) for segmenting an object comprising sub-objects shown in an object image. The apparatus comprises a feature image generation unit (2) for generating a feature image showing features related to intermediate regions between the sub-objects and a segmentation unit (3) for segmenting the sub-objects by using the object image and the feature image. Preferentially, the feature image generation unit (2) is adapted for generating a feature image from the object image. In a further embodiment, the feature image generation unit (2) comprises a feature enhancing unit for enhancing features related to intermediate regions between the sub-objects in the object image.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: September 3, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Thomas Blaffert, Hans Barschdorf, Jens Von Berg, Sebastian Peter Michael Dries, Cristian Lorenz, Rafael Wiemker, Tobias Klinder, Astrid Ruth Franz, Steffen Renisch
  • Patent number: 8467856
    Abstract: A hot spot detection system for automatically segmenting and quantifying hot spots in functional images includes a segmentation unit (76) to segment an anatomical image representation (72) into regions corresponding to anatomical structures of a subject. A hot spot detection unit (90) detects regions of high uptake from a functional second image representation (74). The regions of high tracer uptake indicate high metabolic activity which maybe caused by potentially hazardous tumor lesions or other malignant processes. However, a number of normally functioning organs uptake high amounts of imaging tracer, particularly FDG. Therefore, a suppression unit (102) suppresses regions of high tracer uptake in the functional second image representation based on the results of a classification unit (101). The classification unit classifies the regions of high tracer uptake according to their position relative to the anatomical structures segmented from the anatomical first image representation.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: June 18, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Steffen Renisch, Roland Opfer
  • Publication number: 20120163694
    Abstract: A system and a method of determining a property of blur in an image are provided. According to other aspects a medical image acquisition apparatus, a medical workstation and a computer program product are provided. The system (100) comprises a receiver (102) for receiving the image of an object-of-interest of a body. The image comprises blur. Further, the system comprises a determining subsystem (122) for determining a value of a characteristic of the blur in the image on individual lines of a plurality of lines intersecting with the object-of-interest at different angles. Thus, the lines extend in different directions. The determination of the value comprises analyzing the image along the respective lines. The system further comprises an obtaining subsystem (126) for obtaining a direction in which the value of the characteristic of the blur is maximal, based on the determined values on the individual lines of the plurality of lines, which lines extend in different directions.
    Type: Application
    Filed: September 15, 2010
    Publication date: June 28, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Rafael Wiemker, Thomas Buelow, Steffen Renisch
  • Publication number: 20120123253
    Abstract: A hot spot detection system for automatically segmenting and quantifying hot spots in functional images includes a segmentation unit (76) to segment an anatomical image representation (72) into regions corresponding to anatomical structures of a subject. A hot spot detection unit (90) detects regions of high uptake from a functional second image representation (74). The regions of high tracer uptake indicate high metabolic activity which maybe caused by potentially hazardous tumor lesions or other malignant processes. However, a number of normally functioning organs uptake high amounts of imaging tracer, particularly FDG. Therefore, a suppression unit (102) suppresses regions of high tracer uptake in the functional second image representation based on the results of a classification unit (101). The classification unit classifies the regions of high tracer uptake according to their position relative to the anatomical structures segmented from the anatomical first image representation.
    Type: Application
    Filed: June 15, 2010
    Publication date: May 17, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Steffen Renisch, Roland Opfer
  • Publication number: 20120123801
    Abstract: An oncology monitoring system comprises: an image analysis module (42, 44) configured to perform an oncological monitoring operation based on images of a subject, for example acquired by positron emission tomography (PET) and computed tomography (CT); and a clinical guideline support module (10). The clinical guideline support module is configured to: display a graphical flow diagram (GFD) of a clinical therapy protocol for treating the subject comprising graphical blocks (B0, B1 B2, B3, B4, B5, B21, B211, B22, B221, B222, B223, B23, B231, B232) representing therapeutic or monitoring operations of the clinical therapy protocol including at least one monitoring operation performed by the image analysis module; annotate a graphical block of the graphical flow diagram with subject-specific information pertaining to a therapeutic or monitoring operation represented by the graphical block; and display an annotation (POP) of a graphical block (B211) responsive to selection of the graphical block by a user.
    Type: Application
    Filed: February 11, 2010
    Publication date: May 17, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Roland Opfer, Lilla Boroczky, Ingwer Curt Carlsen, Pradyumna Dutta, Steffen Renisch, Joerg Sabczynski, Paola Karina Tulipano
  • Publication number: 20120066000
    Abstract: A clinical decision support (CDS) system comprises a patient treatment histories database (10, 32) and a patient case navigation tool (10, 30) operative to select a patient treatment history from the patient treatment histories database and to display a flowchart representation (50) of at least a portion of the selected patient treatment history. Optionally, the navigation tool (10, 30) is further operative to selectively display a flowchart representation (64, 66) of a portion or all of a patient nonspecific treatment guideline not coinciding with the selected patient treatment history. Optionally, the CDS system further comprises a patient records query engine (10, 40) operative to receive a query and apply same against the patient treatment histories database to retrieve query results, the navigation tool (10, 30) being further operative to generate a query responsive to user input and to display query results retrieved for the query.
    Type: Application
    Filed: April 9, 2010
    Publication date: March 15, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Roland Opfer, Ingwer C. Carlsen, Autri Dutta, P. Karina Tulipano, Victor Vloemans, Lilla Boroczky, Steffen Renisch
  • Publication number: 20110286652
    Abstract: A system for displaying lung ventilation information, the system comprising an input (12) and a processing unit (15). The input being provided for receiving multiple CT images (71) of a lung, each CT image (71) corresponding to one phase of at least two different phases in a respiratory cycle. The processing unit (15) being configured to compare CT images (71) corresponding to different phases in the respiratory cycle for determining a deformation vector field for each phase, to generate for each phase a ventilation image (72) based on the corresponding deformation vector field, to spatially align the ventilation images (72), and to generate for at least one common position (62) in each one of the aligned ventilation images (72), a function (81) of a time course of a ventilation value for said common position (62), each ventilation value in the function (81) being based on the deformation vector fields corresponding to the aligned ventilation images (73).
    Type: Application
    Filed: January 25, 2010
    Publication date: November 24, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Sven Kabus, Cristian Lorenz, Nicole Schadewaldt, Roland Opfer, Ingwer Curt Carlsen, Steffen Renisch, Joerg Sabczynski, Hans Barschdorf, Jens Von Berg, Thomas Blaffert, Tobias Klinder
  • Publication number: 20110169864
    Abstract: The invention relates to a system (100) for producing a representation of an object in image data, based on a template coupled to a model of the object, the system comprising a model unit for adapting the model to the object in the image data, and a template unit for adapting the template to the adapted model on the basis of the coupling between the template and the model. The template defines a representation of the object which is simpler to interpret than the model. The template may be arranged to emphasize useful features of the object. The template comprises substantially fewer degrees of freedom and thus can be efficiently adapted to the model. Because the template of the invention is coupled to the model, the position, orientation and/or shape of the template is determined by the model adapted to the object in the image data. Hence, the template is adapted to the image data. The adapted template is capable of representing the object and its individual characteristics, e.g.
    Type: Application
    Filed: September 17, 2009
    Publication date: July 14, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Cristian Lorenz, Sebastian Peter Michael Dries, Steffen Renisch, Jens Von Berg
  • Patent number: 7970189
    Abstract: An automated method (1) for the automatic extraction of a pulmonary vessel tree from a 3D medical image, such as multi-slice CT data, is disclosed. A segmented pulmonary vessel is identified as either an artery or a vein by determining a measure for arterialness for the vessel. The measure is based on a relation of the orientation of a local bronchus to the orientation of the segmented pulmonary vessel of the local bronchus. When a vessel is identified as a pulmonary artery, it is added to the pulmonary artery tree. Radii of the pulmonary artery and bronchus are measured automatically and positions where a ratio of these radii exhibits unusual values are presented in a display, preferably for suggesting further assessment by a radiologist, which for instance is useful for pulmonary embolism detection.
    Type: Grant
    Filed: February 6, 2006
    Date of Patent: June 28, 2011
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Thomas Buelow, Rafael Wiemker, Thomas Blaffert, Cristian Lorenz, Steffen Renisch
  • Publication number: 20110124976
    Abstract: A therapy treatment response simulator includes a modeler (202) that generates a model of a structure of an object or subject based on information about the object or subject and a predictor (204) that generates a prediction indicative of how the structure is likely to respond to treatment based on the model and a therapy treatment plan. In another aspect, a system includes performing a patient state determining in silico simulation for a patient using a candidate set of parameters corresponding to another patient and producing a first signal indicative of a predicted state of the patient, and generating a second signal indicative of whether the candidate set of parameters are suitable for the patient based on a known state of the patient.
    Type: Application
    Filed: July 22, 2009
    Publication date: May 26, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Joerg Sabczynski, Steffen Renisch, Ingwer-Curt Carlsen, Sven Kabus, Roland Opfer, Michael Kaus, Karl Antonin Bzdusek, Juergen Weese, Vladimir Pekar
  • Publication number: 20110052018
    Abstract: The present invention relates to an apparatus (1) for segmenting an object comprising sub-objects shown in an object image. The apparatus comprises a feature image generation unit (2) for generating a feature image showing features related to intermediate regions between the sub-objects and a segmentation unit (3) for segmenting the sub-objects by using the object image and the feature image. Preferentially, the feature image generation unit (2) is adapted for generating a feature image from the object image. In a further embodiment, the feature image generation unit (2) comprises a feature enhancing unit for enhancing features related to intermediate regions between the sub-objects in the object image.
    Type: Application
    Filed: February 6, 2009
    Publication date: March 3, 2011
    Applicant: Koninklijke Philips Electronics N.V.
    Inventors: Thomas Blaffert, Hans Barschdorf, Jans Von Berg, Sebastian Peter Michael Dries, Cristian Lorenz, Rafael Wiemker, Tobias Klinder, Astrid Ruth Franz, Steffen Renisch
  • Publication number: 20100128940
    Abstract: An automated method (1) for the automatic extraction of a pulmonary vessel tree from a 3D medical image, such as multi-slice CT data, is disclosed. A segmented pulmonary vessel is identified as either an artery or a vein by determining a measure for arterialness for the vessel. The measure is based on a relation of the orientation of a local bronchus to the orientation of the segmented pulmonary vessel of the local bronchus. When a vessel is identified as a pulmonary artery, it is added to the pulmonary artery tree. Radii of the pulmonary artery and bronchus are measured automatically and positions where a ratio of these radii exhibits unusual values are presented in a display, preferably for suggesting further assessment by a radiologist, which for instance is useful for pulmonary embolism detection.
    Type: Application
    Filed: February 6, 2006
    Publication date: May 27, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS, N.V.
    Inventors: Thomas Buelow, Rafael Wiemker, Thomas Blaffert, Cristian Lorenz, Steffen Renisch