Patents by Inventor Steffen SCHMITT
Steffen SCHMITT has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12087723Abstract: A semiconductor assembly includes a substrate including a metal die attach surface, a semiconductor die that is arranged on the substrate, the semiconductor die being configured as a power semiconductor device and comprising a semiconductor body, a rear side metallization, and a front side layer stack, the front side layer stack comprising a front side metallization and a contaminant protection layer that is between the front side metallization and the semiconductor body, and a diffusion soldered joint between the metal die attach surface and the rear side metallization, the diffusion soldered joint comprising one or more intermetallic phases throughout the diffusion soldered joint, wherein the contaminant protection layer is configured to prevent transmission of contaminants into the semiconductor body.Type: GrantFiled: February 17, 2023Date of Patent: September 10, 2024Assignee: INFINEON TECHNOLOGIES AUSTRIA AGInventors: Victor Verdugo, Katrin Schmidt, Steffen Schmidt, Markus Schmitt
-
Patent number: 12065940Abstract: The invention relates to an exhaust gas turbocharger having a hydrodynamic plain bearing or a hydrodynamic plain bearing, comprising a rotor (10) and a counter-bearing part (50) assigned to the rotor (10), wherein a rotor bearing surface of the rotor (10) and a counterface of the counter-bearing part (50) face each other to form the hydrodynamic plain bearing in the form of a combined journal—thrust bearing, having a continuous hydrodynamically load bearing gap formed between the rotor bearing surface and the counterface, wherein the rotor bearing surface and/or the counterface, when cut longitudinally and through the axis of rotation (R) in sectional view, form(s) a bearing contour forming merging contour sections (17.1 to 17.3; 44.1 to 44.3; 53.1 to 53.3) to generate hydrodynamic load capacities in both the radial and the axial direction, wherein a contour section (17.3; 44.3; 53.Type: GrantFiled: November 22, 2019Date of Patent: August 20, 2024Assignee: BMTS Technology GmbH & Co. KGInventors: Martin Berger, Rüdiger Kleinschmidt, Frieder Stetter, Oliver Kuhne, Steffen Schmitt
-
Patent number: 11982285Abstract: The invention relates to a compressor (20) for generating a compressed air flow for a fuel cell (10), having a compressor element (21), in particular a compressor wheel, wherein the compressor element (21) is coupled in a to a drive shaft (23) for co-rotation, the drive shaft (23) being driven by a motor (22), in particular an electric motor, wherein at least one hydrodynamic or hydrostatic bearing (24, 25) is used to mount the shaft (23) in a rotatable manner, wherein the plain bearing (24, 25) is connected to a lubricant supply means (30), which is used to supply a lubricant for hydrodynamic or hydrostatic pressure generation to the plain bearing (24, 25), wherein the lubricant is water or a fluid mixture, predominantly comprising water, wherein the plain bearing (24, 25) has a lubricant inlet and a lubricant outlet, wherein the lubricant can be routed to the plain bearing (24, 25) via the lubricant inlet and the lubricant can be discharged from the plain bearing (24, 25) via the lubricant outlet, and whereType: GrantFiled: February 4, 2021Date of Patent: May 14, 2024Assignee: BMTS Technology GmbH &Co. KGInventors: Steffen Schmitt, Frieder Stetter, Oliver Kuhne, Rüdiger Kleinschmidt, Gunter Winkler
-
Publication number: 20230146415Abstract: The invention relates to a compressor (20) for generating a compressed air flow for a fuel cell (10), having a compressor element (21), in particular a compressor wheel, wherein the compressor element (21) is coupled in a to a drive shaft (23) for co-rotation, the drive shaft (23) being driven by a motor (22), in particular an electric motor, wherein at least one hydrodynamic or hydrostatic bearing (24, 25) is used to mount the shaft (23) in a rotatable manner, wherein the plain bearing (24, 25) is connected to a lubricant supply means (30), which is used to supply a lubricant for hydrodynamic or hydrostatic pressure generation to the plain bearing (24, 25), wherein the lubricant is water or a fluid mixture, predominantly comprising water, wherein the plain bearing (24, 25) has a lubricant inlet and a lubricant outlet, wherein the lubricant can be routed to the plain bearing (24, 25) via the lubricant inlet and the lubricant can be discharged from the plain bearing (24, 25) via the lubricant outlet, and whereType: ApplicationFiled: February 4, 2021Publication date: May 11, 2023Inventors: Steffen Schmitt, Frieder Stetter, Oliver Kuhne, Rüdiger Kleinschmidt, Gunter Winkler
-
Patent number: 11629614Abstract: An exhaust gas turbocharger having a hydrodynamic plain bearing or a hydrodynamic plain bearing, comprising a rotor (10) and a counter-bearing part (50) assigned to the rotor (10), wherein a rotor bearing surface (17.1, 17.2, 17.3) of the rotor (10) and a counter-surface of the counter-bearing part (50) face each other to form a hydrodynamic plain bearing, wherein the rotor bearing surface and/or the counterface, when cut along and through the axis of rotation (R) in sectional view, form(s) a continuous bearing contour forming at least two contour sections (44.1 to 44.3; 53.1 to 53.3) to provide hydrodynamic load capacities in both radial and axial directions, and wherein the counter-bearing part (50) is mounted in a bearing housing (60) or housing part.Type: GrantFiled: November 22, 2019Date of Patent: April 18, 2023Inventors: Martin Berger, Rüdiger Kleinschmidt, Frieder Stetter, Oliver Kuhne, Steffen Schmitt
-
Patent number: 11549397Abstract: The invention relates to an exhaust gas turbocharger having a fluid dynamic bearing having a rotor (10) and a counter-bearing part (50) assigned to the rotor (10), wherein a rotor bearing surface of the rotor (10) and a counterface of the counter-bearing part (50) face each other, to form a fluid dynamic bearing, wherein the rotor bearing surface and/or the counterface form(s) a continuous bearing contour when cut longitudinally and through the axis of rotation (R) in sectional view, which bearing contour(s) are formed of at least two contour sections (44.1 to 44.3; 53.1 to 53.3) to generate fluid dynamic load capacities in both the radial and the axial directions, wherein the bearing surface of the rotor (10) is formed by a rotor part (40), which is connected to a rotor shaft (11) and is secured on the rotor shaft (11), and wherein the rotor part (40) is supported relative to the rotor shaft (11) in the area of a support section (14) of the rotor shaft (11).Type: GrantFiled: November 22, 2019Date of Patent: January 10, 2023Inventors: Martin Berger, Rüdiger Kleinschmidt, Frieder Stetter, Oliver Kuhne, Steffen Schmitt
-
Publication number: 20220275750Abstract: The invention relates to a gas compressor 10, in particular a turbocharger, having a rotatably mounted compressor wheel which is arranged at least partially in a compressor housing, the compressor housing having a gas routing area, for guiding a gas stream compressed by means of the compressor wheel, wherein an electric motor is provided, which has a motor rotor and a motor stator and which is mounted at least sectionally in a mounting area of a motor housing. In order to ensure permanently reliable operation in such a gas compressor 10 in a simple manner, it is provided in accordance with the invention that a gas pressure generator is provided, which is connected to the mounting area of the motor housing (20) in an air-conveying manner via at least one gas pressure line (70).Type: ApplicationFiled: February 24, 2022Publication date: September 1, 2022Inventors: Sebastian Beyerlein, Rüdiger Kleinschmidt, Steffen Schmitt, Oliver Kuhne, Philipp Blasch
-
Patent number: 11408529Abstract: A coupling device couples a drive shaft of a pivot drive (30) of an exhaust gas stream exhaust flap (10) for an internal combustion engine with a pivot shaft (14), which is rotatable about a pivot axis (A) and carries a flap member (16). The coupling device includes a coupling element (46) with a first coupling area (42) positive-locking engaging with a drive shaft (34) and with a second coupling area (44) positive-locking engaging with a pivot shaft. A prestressing element (58) is supported in relation to the coupling element and in relation to a support element (66) and prestresses the coupling element in a direction of a coupling axis (K), axially away from the support element and in a circumferential direction. A preassembly-blocking device (78) holds the support element under axial prestress and circumferential prestress in a preassembled position in relation to the coupling element.Type: GrantFiled: February 11, 2020Date of Patent: August 9, 2022Assignee: PUREM GMBHInventors: Steffen Schmitt, Annika Zeumer, Andreas Wacker
-
Patent number: 11333084Abstract: An exhaust gas flap includes a flap tube (12), a flap diaphragm (16), in an interior of the flap tube on a pivot shaft (14) rotatable about a pivot axis (A), a pivot drive (30) for the pivot shaft (14) and a coupling device (36) coupling the pivot shaft to a drive shaft (34). The coupling device includes a first coupling area (42) rotationally coupled, positive-lockingly meshed with the drive shaft and a second coupling area (44) rotationally coupled, positive-lockingly meshed with the pivot shaft. A biasing element (58) is supported in relation to the coupling device and in relation to one shaft of the drive shaft and the pivot shaft. The coupling device is axially prestressed, by the prestressing element, away from the one shaft along in the direction of the pivot axis and is prestressed about the pivot axis in relation to the one shaft.Type: GrantFiled: September 23, 2019Date of Patent: May 17, 2022Assignee: PUREM GMBHInventors: Annika Zeumer, Steffen Schmitt
-
Publication number: 20220120193Abstract: The invention relates to an exhaust gas turbocharger having a hydrodynamic plain bearing or a hydrodynamic plain bearing, comprising a rotor (10) and a counter-bearing part (50) assigned to the rotor (10), wherein a rotor bearing surface of the rotor (10) and a counterface of the counter-bearing part (50) face each other to form the hydrodynamic plain bearing in the form of a combined journal—thrust bearing, having a continuous hydrodynamically load bearing gap formed between the rotor bearing surface and the counterface, wherein the rotor bearing surface and/or the counterface, when cut longitudinally and through the axis of rotation (R) in sectional view, form(s) a bearing contour forming merging contour sections (17.1 to 17.3; 44.1 to 44.3; 53.1 to 53.3) to generate hydrodynamic load capacities in both the radial and the axial direction, wherein a contour section (17.3; 44.3; 53.Type: ApplicationFiled: November 22, 2019Publication date: April 21, 2022Inventors: Martin Berger, Rüdiger Kleinschmidt, Frieder Stetter, Oliver Kuhne, Steffen Schmitt
-
Publication number: 20220065132Abstract: The invention relates to an exhaust gas turbocharger having a fluid dynamic bearing having a rotor (10) and a counter-bearing part (50) assigned to the rotor (10), wherein a rotor bearing surface of the rotor (10) and a counterface of the counter-bearing part (50) face each other, to form a fluid dynamic bearing, wherein the rotor bearing surface and/or the counterface form(s) a continuous bearing contour when cut longitudinally and through the axis of rotation (R) in sectional view, which bearing contour(s) are formed of at least two contour sections (44.1 to 44.3; 53.1 to 53.3) to generate fluid dynamic load capacities in both the radial and the axial directions, wherein the bearing surface of the rotor (10) is formed by a rotor part (40), which is connected to a rotor shaft (11) and is secured on the rotor shaft (11), and wherein the rotor part (40) is supported relative to the rotor shaft (11) in the area of a support section (14) of the rotor shaft (11).Type: ApplicationFiled: November 22, 2019Publication date: March 3, 2022Inventors: Martin Berger, Rüdiger Kleinschmidt, Frieder Stetter, Oliver Kuhne, Steffen Schmitt
-
Publication number: 20210310372Abstract: An exhaust gas turbocharger having a hydrodynamic plain bearing or a hydrodynamic plain bearing, comprising a rotor (10) and a counter-bearing part (50) assigned to the rotor (10), wherein a rotor bearing surface (17.1, 17.2, 17.3) of the rotor (10) and a counter-surface of the counter-bearing part (50) face each other to form a hydrodynamic plain bearing, wherein the rotor bearing surface and/or the counterface, when cut along and through the axis of rotation (R) in sectional view, form(s) a continuous bearing contour forming at least two contour sections (44.1 to 44.3; 53.1 to 53.3) to provide hydrodynamic load capacities in both radial and axial directions, and wherein the counter-bearing part (50) is mounted in a bearing housing (60) or housing part.Type: ApplicationFiled: November 22, 2019Publication date: October 7, 2021Inventors: Martin Berger, Rüdiger Kleinschmidt, Frieder Stetter, Oliver Kuhne, Steffen Schmitt
-
Patent number: 11105275Abstract: A regulating flap, especially exhaust flap for the exhaust gas stream of an internal combustion engine, includes a flap body (12), a flap diaphragm (16) carried on a pivot shaft (14) that is rotatable about a pivot axis (S) in the interior of the flap body (12). A pivot drive (20) has a drive element (30) to be coupled with the pivot shaft (14). A fixing device (40) fixes the pivot drive (20) in relation to the flap body (12). The fixing device (40) includes a bayonet fastener (38).Type: GrantFiled: November 23, 2018Date of Patent: August 31, 2021Assignee: EBERSPÄCHER EXHAUST TECHNOLOGY GMBH & CO. KGInventors: Annika Zeumer, Steffen Schmitt, Alexander Lermer, Domenic Binder, Thomas Faller, Andreas Kaiser
-
Patent number: 10961896Abstract: A method provides for manufacturing a flap carrier for an exhaust gas flap, especially for the exhaust gas stream of an internal combustion engine. The method includes providing a flap housing (50) and providing a stop ring (48). The stop ring (48) is inserted into the flap housing (50) in a position corresponding to an installed position. The stop ring (48) is fixed to the flap housing (50). Subsequently to fixing the stop ring (48) to the flap housing (50), at least one shaft opening (60, 62) for a pivot shaft carrying a flap diaphragm with at least one flap wing is inserted into the stop ring (48).Type: GrantFiled: November 13, 2017Date of Patent: March 30, 2021Assignee: Eberspächer Exhaust Technology GmbH & Co. KGInventors: Annika Zeumer, Steffen Schmitt, Stefanos Varelis, Ralf Hölsch
-
Publication number: 20210079854Abstract: A regulating flap, especially exhaust flap for the exhaust gas stream of an internal combustion engine, includes a flap body (12), a flap diaphragm (16) carried on a pivot shaft (14) that is rotatable about a pivot axis (S) in the interior of the flap body (12). A pivot drive (20) has a drive element (30) to be coupled with the pivot shaft (14). A fixing device (40) fixes the pivot drive (20) in relation to the flap body (12). The fixing device (40) includes a bayonet fastener (38).Type: ApplicationFiled: November 23, 2018Publication date: March 18, 2021Inventors: Annika ZEUMER, Steffen SCHMITT, Alexander LERMER, Domenic BINDER, Thomas FALLER, Andreas KAISER
-
Patent number: 10823088Abstract: An exhaust gas flap includes a flap tube (12), a flap diaphragm (16) carried in the interior of the flap tube (12) on a pivot shaft (14) rotatable about a pivot axis (A), a pivot drive (30) and a coupling device (36) coupling the pivot shaft (14) to a drive shaft (34) of the pivot drive (30). The coupling device (36) includes a first coupling area (42) that positive-lockingly meshes with the drive shaft (34) and a second coupling area (44) that positive-lockingly meshes with the pivot shaft (14). A biasing element (78) is supported in relation to the coupling device (36) and is supported in relation to one shaft of the drive shaft (34) and the pivot shaft (14). The coupling device (36) is axially biased by the biasing element (78) towards the other shaft and is prestressed about the pivot axis in relation to the one shaft.Type: GrantFiled: September 23, 2019Date of Patent: November 3, 2020Assignee: Eberspächer Exhaust Technology GmbH & Co. KGInventors: Annika Zeumer, Steffen Schmitt, Andreas Wacker, Dennis Bahr, Sven Grötzinger, Matthias Grün
-
Patent number: 10816036Abstract: A bearing bushing for a charging device may include an inner jacket surface including at least two radial depressions. A respective lowest point of the at least two radial depressions may be disposed on a circle having a radius R1. A plurality of plateau surfaces may be disposed circumferentially between the at least two radial depressions and may be offset radially towards an inside of the bearing bushing. The plateau surfaces may be curved and may have a constant radius R2. A ratio between the radius R1 and the radius R2 may correspond to the relationship: R1/R2=1.001 to 1.015.Type: GrantFiled: December 4, 2017Date of Patent: October 27, 2020Assignee: BMTS Technology GmbH & Co. KGInventors: Ruediger Kleinschmidt, Oliver Kuhne, Steffen Schmitt, Frieder Stetter
-
Publication number: 20200256477Abstract: A coupling device couples a drive shaft of a pivot drive (30) of an exhaust gas stream exhaust flap (10) for an internal combustion engine with a pivot shaft (14), which is rotatable about a pivot axis (A) and carries a flap diaphragm (16). The coupling device includes a coupling element (46) with a first coupling area (42) positive-locking meshing with a drive shaft (34) and with a second coupling area (44) positive-locking meshing with a pivot shaft. A prestressing element (58) is supported in relation to the coupling element and in relation to a support element (66) and prestresses the coupling element in a direction of a coupling axis (K), axially away from the support element and in a circumferential direction. A preassembly-blocking device (78) holds the support element under axial prestress and circumferential prestress in a preassembled position in relation to the coupling element.Type: ApplicationFiled: February 11, 2020Publication date: August 13, 2020Inventors: Steffen SCHMITT, Annika ZEUMER, Andreas WACKER
-
Patent number: 10690063Abstract: An exhaust gas flap, especially for the exhaust gas stream of an internal combustion engine, includes a flap tube (24), a flap diaphragm (26). The flap diaphragm (26) is carried in the interior of the flap tube (24) on a pivot shaft (18), rotatable about a pivot axis (A). The flap diaphragm (26) has at least one flap diaphragm part (28, 30) and a mounting area (40) enclosing the pivot shaft (18) in at least some areas. A wing stop (42, 44) is provided at an inner circumferential area of the flap tube (24) in association with at least one flap diaphragm part (28, 30). A recess (60, 62, 64, 66) at the flap diaphragm (26), receiving a circumferential end area (48, 50) of a wing stop (42, 44), is provided in at least one axial end area of the mounting area (40).Type: GrantFiled: June 26, 2017Date of Patent: June 23, 2020Assignee: EBERSPÄCHER EXHAUST TECHNOLOGY GMBH & CO. KGInventors: Stefanos Varelis, Steffen Schmitt
-
Publication number: 20200095945Abstract: An exhaust gas flap includes a flap tube (12), a flap diaphragm (16) carried in the interior of the flap tube (12) on a pivot shaft (14) rotatable about a pivot axis (A), a pivot drive (30) and a coupling device (36) coupling the pivot shaft (14) to a drive shaft (34) of the pivot drive (30). The coupling device (36) includes a first coupling area (42) that positive-lockingly meshes with the drive shaft (34) and a second coupling area (44) that positive-lockingly meshes with the pivot shaft (14). A biasing element (78) is supported in relation to the coupling device (36) and is supported in relation to one shaft of the drive shaft (34) and the pivot shaft (14). The coupling device (36) is axially biased by the biasing element (78) towards the other shaft and is prestressed about the pivot axis in relation to the one shaft.Type: ApplicationFiled: September 23, 2019Publication date: March 26, 2020Inventors: Annika ZEUMER, Steffen SCHMITT, Andreas WACKER, Dennis BAHR, Sven GRÖTZINGER, Matthias GRÜN